Design Review

PSEC3 8-2-2010

ADC
- digital structure
- specifications
- test points

Eric Oberla
ADC

Up to 12 bit Wilkinson ADC with 2 stage structure of counter+storage (fast dff+latch)

In the future, this 2-stage structure could be tweaked to allow concurrent readout and digitization (would drastically reduce dead-time).
Standard NOR latch with Enable input follows fast d flip flop.

EN = 1 : latch is transparent
EN = 0 : latch stores last value
When running in 12 bit mode, notice of over-count given by overflow bit
Cell’s data addressed by Channel_sel & Token_sel. (more in readout slides)
Counting and latch transparency controlled by comparator output
1GHz with comparator output = 200ns
DAT = 0b000011001011 ==203 counts (comparator rise+fall time)
ring oscillator

- ~200MHz-2GHz clock generated on chip with ring oscillator
- 1 per channel + fan-out
- keep same structure as on PSEC2 - five stage inverter chain w/ positive feedback (analog controls on 2 stages)

Experimental results from PSEC2

![Graph showing experimental results from PSEC2](image)
ring oscillator

improvements

- ‘frequency select’ option: duty cycle of RO departs from 50% @ f<1GHz, so to run slower, send 2GHz through divide-by-4 stage. Gives clean clock up to 500 MHz.

- ‘RO_enable’ option: RO is free-running, but RO_en allows the fan-out drivers to be turned on/off (reducing noise).
Clock fan-out

- fully simulated post-layout. Successfully distributes RO clock to 256 cells up to about 1.8 GHz.
- drivers can be turned off during sampling to reduce digital noise

Post-layout sim @ 800MHz

Note: vdd is being pulled down ~70 mV per cycle. This is corrected in the final ADC layout by using much larger power rails
noise considerations

- ADC can be completely turned off during sampling (except for ring oscillator)

- Complete structure surrounded by a 50 micron width of BFMOAT that gives ~130 Ohms of substrate resistance between other parts of chip.

- ‘Large’ decoupling cap (3.5 pF) near ring oscillator

- Upon extraction, 75 pF of parasitic capacitance between vdd and gnd

- Separate power rails for ADC and analog structures
layout
layout

- Fan-out drivers
- Ring oscillator
- Data bus tri-state drivers (enabled by channel_select)
Test points

- Will have ‘Test-ADC’ on chip as test structure
 - Include comparator – Ring oscillator – ADC cell
 - Test outputs: COMPout_test, RO_monitor, ADCdat_test
 - Test data will use serial readout (only one output pad needed)

- Also, test output for RO_fanout