

Sampling cell – Dynamic range – Analog bandwidth Hervé Grabas

Sampling cell – Principle

- An unit is basically made of one storage capacitance controlled by two signals :
 - –Timing (800ps wide pulse).
 - -Trigger (in case of an event).
- Timing stores the analog values in the sampling capacitance at a rate of 15Gs/s.
- Trigger open all the write switches in case of an event at the input.

Nota: in case of this diagram Timing is active high.

Input switch size: 10µm×120nm.

Sampling cell – Input switch Ron

The Ron resistance is Voltage dependent. There fore the rise time will be amplitude dependent inside the cell. Ron ~ 100Ω

Switch leackage

Voltage drop: 35mV in 3us. Leackage current: 600pA.

Sampling cell – Capacitance

- Sampling capacitance: 60fF after extraction.
- Interdigited layout with three levels of metals (M1, M2, M3).
- Shielding
 - Top shielding in MQ.
 - Side shielding in M1, M2, M3, MQ.

Input line improvements

- Went from M3 to MQ (gain a factor 2 in lin.res.).
- Add anti-fill layers, for layers from M1 to MG.
- Increase the width.

80888888888				
				Į.

- Separate analogic vdd and analogic gnd.
- Regenerative buffers for every input signals (Timing, Trigger, Read, Write).

Sampling cell – Layout

- Size:12µm×55µm.
- Input line in MG : 800nm×3.072mm.
- Input line resistance: $38\mu\Omega/\Box$.
- Total input line resistance: $.146\Omega$.
- Total input line capacitance: 1.5pF (without including the pad).
- The sampling has 2 poles:
 - $1/(2 \times \pi \times 50\Omega \times 1.5 \text{ pF}) = 2\text{ GHz.}$ (input line)
 - $1/(2 \times \pi \times 100\Omega \times 60 \text{ F}) = 20 \text{ GHz.}$ (sampling cap)

THE UNIVERSITY OF Sampling cell – Simulations

Transient Response

50ps rise time (7GHz bwt). The limitation is at the input.

The 50 Ω input resistance

- The input line coming from the detector is a 50Ω transmission line.
- There is three possibilities for the terminaison:
 - On board
 - On chip after the pads
 - On chip at the end of the 256 cells.

The 50 Ω input resistance (2)

	Advantages	Disadvantages
On the board	 Can be replaced Possibility of a good transmission line until the terminaison. 	 The pad capacitance ~3pF and input line cap ~1.5pF are in series with 50Ω. Bwth <1GHz
After the pad	 Input signal won't see the pad input cap. Bandwidth 1-2GHz. 	 Non replaceable. More impedance mismatch at the input of the chip.
After the transmission line	 Maximum bandwith possible. 	 Non replaceable Potentiel drop of tension across the input line (Res = .1Ω) ?

The 50Ω input resistance

- 4 channels with 50Ω outside the chip.
- 2 test channels with 50Ω at the end of the line.