JParc-K DAQ System

Mircea Bogdan
December 9-10, 2006
• Csl DAQ up to 2,816 Ch 14Bit/125 MHz : 11 Crates x 16 ADC Bds x16 Ch/Bd
• Veto DAQ up to 512 Ch 14Bit/125 MHz : 2 Crates x 16 ADC Bds x16 Ch/Bd
• BHPV DAQ up to 100 Ch 12Bit/500 MHz : 1- 4 Crates x 7 FADC Bds x4 Ch/Bd

Custom Boards:
- ADC-125MHz,
- FADC-500MHz,
- Traffic Control,
- System Trigger.
• Same Crate Configuration for all 3 DAQ Systems;
• All Crates: 6U VME 32/64 CBLT;
• CsI and Veto DAQ – same boards, different firmware;
• Beam Hole Phase Veto (BHPV) DAQ – different ADC Boards, different firmware.
Each FADC channel: one ATME - AT84AS001 chip: 12 bits/500MHz;
One STRATIX II FPGA can service up to 4 ADC channels:
 - After SERDES, data moved with 125MHz;
 - Trigger rate: 10kHz, 64 samples/trigger (128ns);
 - Input Pipeline: 25 -100us max depth (12,800 - 51,200 samples);
 - Two VME readout buffers - max 128 triggers each (10 ms);
 - Read Out Pulse in sync with VME, generate trigger time stamp;
 - FPGA device migration possible to increase/decrease max pipeline size;
Each ADC channel - one AD9445 chip: 14 bits/125MHz;
One STRATIX II FPGA can service 16 ADC channels:
 – Logic design and memory - similar to 500MHz FADC without SERDES;
 – Trigger rate: 10kHz, 32 samples/trigger (256ns);
 – Input Pipeline: 25 -100us max depth (3,200 – 12,800 samples);
 – Two VME readout buffers - max 128 triggers, (10 ms);
 – Read Out Pulse in sync with VME, generate trigger time stamp;
 – FPGA device migration possible to increase/decrease max pipeline size;
Readout Throughput

14Bit/125MHz ADC DAQ: 2,816 channels = 11 crates:
- 16 ADC Boards/Crate x 16 ADC Channels/Board = 256 Channels/Crate.
- 10 KHz trigger rate, 10% channel hit occupancy, 32 samples/trigger:
 - One channel: 10KHz x 10% x 2Bytes x 32samples = 64 KBPS;
 - 16-channel board: 1 MBPS/board
 - Crate with 16 boards: 16 MBPS - can be sustained via VME64 backplane;

12Bit/500MHz FADC DAQ: 25 -100 channels = 1-4 crates:
- 6.25 FADC Boards/Crate x 4 ADC Channels/Board = 25 Channels/Crate.
- 10 KHz trigger rate, 100% channel hit occupancy, 64 samples/trigger:
 - One channel: 10KHz x 12bits x 64samples = 0.96 MBPS;
 - 4-channel board: 3.84 MBPS/board;
 - Crate with 25 channels: 24 MBPS - can be sustained via VME64 backplane;
Preliminary FPGA Design Tests

- High level of reuse between the two designs; many logic blocks are the same;

- FPGA requirements:
 - About the same for: 4-ch,500MHz and 16-ch,125MHz boards;
 - May be larger on the 4-ch,500MHz board because of higher readout throughput per board;

- Preliminary FPGA design tests on both boards with Altera EP2S60F1020C5 ($600):
 - 25us depth pipeline, two 32KBytes readout buffers (256Bits, 1024 words);

- FPGA device migration possible on the same PCB:
 - With Altera EP2S90F1020C5 ($1,600): ~ 1.8 x memory;
 - With Altera EP2S130F1020C5 ($2,800): ~ 2.7 x memory;
Board Manufacturing Cost Estimate

• 176 pieces ADC-125 Board, 16-ch, 125MHz, 6U VME, with EP2S60F1020C5($600):
 – $1,600(parts) + $300(pcb) + $500(assy) = $2,400/board = $150/channel;

• 7-25 pieces ADC-500 Board, 4-ch, 500MHz, 6U VME, with EP2S130F1020C5($2,800):
 – $3,800(parts) + $300(pcb) + $500(assy) = $4,600/board = $1,150/channel;
 – (with EP2S60F1020C5, the price drops to $2,400/board = $600/channel);

• 14-17 pieces Crate Traffic Controller (CTC) Board:
 – $1,600(parts) + $300(pcb) + $500(assy) = $2,400/board;

• 1-2 pieces System Trigger Module Board:
 – $4,000(parts) + $3,000(pcb) + $3,000(assy) = $10,000 for 2 boards;

• 1 Piece 6U VME-VIPA Crate with Power Supplies and Crate CPU:
 – $12,500.
JParc-K DAQ System Cost Estimate
(Full Cost: Engineering + Prototyping + Manufacturing)

• **CsI System with 3,000 channels, Crates, CPUs, ADC-125 boards:**
 – Total cost: $860,000 i.e. $285/channel;

• **Veto DAQ with 512 channels, Crates, CPUs, ADC-125 boards:**
 – Same ADC boards with different firmware;
 – Total cost: $115,000 i.e. $230/channel;

• **Beam Hole Phase Veto (BHPV) DAQ:**
 – with 50 channels, Crates, CPUs, ADC-500 boards:
 • With EP2S60F1020C5: $230,000 i.e. $4,600/channel;
 • With EP2S130F1020C5: $260,000 i.e. $5,200/channel;
 – with 100 channels, Crates, CPUs, ADC-500 boards:
 • With EP2S60F1020C5: $290,000 i.e. $2,900/channel;
 • With EP2S130F1020C5: $360,000 i.e. $3,600/channel;

• 15 pieces Crate Traffic Controller (CTC) Board:
 – Total Cost: $143,000;

• 2-3 pieces System Trigger Module (STM) Board:
 – Total cost: $105,000;

Total DAQ System Cost: ~ $1,500,000.
Design Examples

Examples of DAQ Boards designed by
UC Electronics Development Group

32 Ch, 18Bit/800kHz ADC Board

96 Ch, 1.2ns TDC Board

6 Ch, 8Bit/500MHz FADC Board