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1. Introduction 
 

a. FTK and the ATLAS detector 
 
The ATLAS detector is a multi-layered, general purpose particle detector on the 
Large Hadron Collider. The FastTracKer(FTK) reconstructs the particles’ trajectory 
through its inner detectors, namely the Pixel(pix) and SCT detectors. 

  For a visual overview of FTK hardware system, see Slide2. 

b. Hit:  

 The locations of the particles’ path through the layers of ATLAS inner detectors 
 (3 pix layers and 5 sct layers), i.e. hits, are stored in a series of coordinates to 
 identify the positions.  

 The Hits are stored as a 32-bit word for the PIX layers, and 16-bit word for the 
 SCT layers. 
 

c. SSID:  
 
 The inner detectors are sliced up into small sections called SuperStrips (SS). The 
 position of the SS is translated into a 14-bit word called the SSID. During one 
 particle colliding-splashing-passing event, a specific SS could have no hits, 1 hit, 
 or multiple hits, hence the hits can be grouped according to their SSID.  
 

d. Don’t Care (DC):  
 
 As mentioned above, we group and match hits according to their SSID. 
 Sometimes we may not want to match the entire 14-bits, so we “Don’t Care” the 
 last few bits of the SSID. In the current design, we may use up to 3LSB of the SSID 
 as DC bits.  
 
 In latter paragraphs, the entire 14-bit SSID could be referred to as fullSSID, while 
 the 11MSB of the SSID (without the 3LSB DC part) is called the AMSSID. If 
 unspecified, SSID refers to the full 14bits.  
 

e. RoadID 



We have a giant LUT called the AMMap. RoadIDs are 21bit words that the 
AMMap use to fetch the corresponding SSIDs for an event.  

 
f. Data Organizer(DO): 

 
 The DO stores incoming hits from the Data Formatter and stores them according 
 to their SSID. For a given RoadID, the RoadID word is translated into SSIDs by 
 the AMMap, and the DO retrieves the stored hits corresponding to the SSIDs.  
 
 Through smart firmware design, we would like to achieve 

o Rapid storage and retrieval of hits according to the SSIDs 
o Efficient resource usage  

2. Structure  

For an overview of the AUX card, see Slide3.  

For an overview of I/O for the DO, see Slide4.   

The DO firmware use a list of pre-defined signal types listed in DO_deflib.vhd. 

a. Input (excluding external memory interface):  
 

o top_clk : global clock with a frequency of 200MHz. The maximum frequency 
allowed by the firmware is currently closer to 140 MHz for the DO alone, and 
90MHz for the whole system (which does not quite meet our goals). 
 

o top_reset : global reset 
 

o top_inrxchan[11][32] : input from transceiver; 32 bit words containing Hits & 
SSIDs. The transceiver sends Hits & SSIDs on 12 parallel streams, 2 streams 
per pix layer and 1 stream per sct layer 
 
 pix layer: 
rxchan0 to 5 carry input for the 3 pix layers. 
Each pix layer is split into two streams, (0,1), (2,3), (4,5): layers0,2,4 carry 
information for pix hits with odd SSIDs; layer1,3,5 carry information for 
pix hits with even SSIDs. 



The pix hit is a 32bit word, so due to width constraints we cannot bunch 
pix hit&SSID into the same word. Instead they are sent out consecutively, 
with bit(29) reserved to indicated whether that word is a hit or SSID:  
bit(29)=0, hit word, all 32 bits 
bit(29)=1, SSID, 14MSB 
 
 sct layer: 
rxchan 6 to 10 carry input for the 5 sct layers respectively. 
The sct hit is a 16bit word, so we can group the hit together with the 
SSID. bit(15..0), hit word; bit(29..16), SSID.  
 

o EE[11] :  this is the End-of-Event flag to indicate the last hit of the event has 
been received by the DO. In the final version EE would be part of the Hit 
Word package, and handled by a multi-layer synchronization structure. Right 
now before the data format is finalized, it is temporarily set as an 11bit input 
linked to one of the idle transceiver outputs, with 1 bit for each layer of hit 
input.  

o top_inRoadchan[32] : input from transceiver; 32 bit word containing RoadID 
(24LSB) and HitMap(8MSB). The RoadID word is translated into SSIDs per 
layer by the AMMap; the HitMap indicates whether or not the specific layer 
has been hit (1 with hit; 0 no hit) for the 3 pix layers+ 5 sct layers. 

 
b. Output (excluding external memory interface) 

   
o top_hlm8L_outpixhit[3][32]: output to TrackFitter; Hits for the 3 pix layers 

sent out on 3 parallel streams respectively. 
o top_hlm8L_outscthit[5][16]: output to TrackFitter; Hits for the 5 sct layers 

sent out on 5 parallel streams respectively. 
o top_outRoadID[24]: output to TrackFitter from transceiver 
o top_outsectorID[16]: output to TrackFitter from AMMap 
o top_outlayermap[8]: output to TrackFitter from transceiver, indicating 

whether that layer has been hit 
o top_hlc8L_SSlast[8]: state machine signal, indicating whether the last SSID 

from that event for that layer has been processed(i.e. last hit from that SSID 
sent out to TF); currently connected to temporary dummy outputs ; may be 
used later as part of control/enable signals for the whole AUX system.  



o top_hlc8L_empty[8]: state machine signal, indicating whether that SSID has 
no hits (i.e. empty); currently connected to temporary dummy outputs ; may 
be used later as part of control/enable signals for the whole AUX system. 

o top_hlcrd8L_ovflw[8]: state machine signal, indicating hit overflow (counter 
exceeding the HitCnt for that SSID in error) in the READ mode; currently 
connected to temporary dummy outputs ; may be used later as part of 
control/enable signals for the whole AUX system. 

o top_hlcwr11L_ovflw[11]: state machine signal, indicating hit overflow (more 
hits than the maximum the HCM width allows) in the WRITE mode; currently 
connected to temporary dummy outputs ; may be used later as part of 
control/enable signals for the whole AUX system. 
 neither overflow cases should happen; in current compilation both 

sets of registers are stuck to GND 
o top_hitee11L[11]: state machine signal, End-of-Event flag passed through the 

DO structure; currently connected to temporary dummy outputs ; may be 
used later as part of control/enable signals for the whole AUX system 

       
c. External Memory Interface (AMMAP_int) 

  We use using RLDRAMII: MT49H16M36-25 as the external memory that stores  
  the AMMap. The interface is generated using QuartusII 12.1 for Arria V.   

 See Slide11. (additional details to come) 
 

d. Double DOs 
 
 As mentioned before, the DO has two states, WRITE and READ. For each DO, 
 the firmware is duplicated, with one in WRITE mode on event n and the other in 
 READ mode on event (n-1). In WRITE mode, hits are written into the DO. In READ 
 mode, hits are extracted for each road number sent by the AMB. When WRITE 
 mode is finished, the state is switched to READ mode for the same event. When 
 READ mode is finished, the state is switched to WRITE mode for a new event. 
 A FSM controls which state either DO is in (details later). The AMMap interface 
 sends out SSIDs and other information to the DO that is in the READ mode. 
 A block diagram for the structure is shown on Slide5.  
 

e. Parallel Structure 
 



 Inside each copy of DO, since for the WRITE mode, the incoming Hits and SSIDs 
 are sent from the transceiver on parallel streams, one for each layer, and for the 
 READ mode, the AMMAP translates the ROADID into SSIDs on parallel streams, 
 again one for each layer, and the final output to the TF is also on parallel streams 
 by layer, the DO has a fully parallel structure, i.e. the same (or similar if you 
 consider the slight difference in data length between pix and sct layers) logic 
 structure (including control logic and on-chip memories) repeated over 11layers 
 (3*2=6pix, and 5sct).  
 A block diagram for one layer of DO structure is shown on Slide7.  
 

f. On-chip memories 
 
 To achieve the DO’s functionality of rapid storage and retrieval with efficient 
 resource usage, the information of Hits w.r.t. their SSIDs are stored in 3 types 
 RAM structures on-chip, the HitCountMem(HCM), the HitListPointer(HLP), and 
 the HitListMem(HLM).  
 

1) HitCountMem(HCM) 
 
The HCM stores the number of hits in a given SSID. In the case of using DC bits 
(we use 3 DCbits, i.e. the 3LSB of SSID) in SSID matching, and because we do not 
have enough time to clear all HCMs at the beginning of each event, we came up 
with the following scheme for the HCM:  
for each layer, there is a set of 8 identical HCMs, each 11bit deep (using the 
11bit AMSSID, i.e. 11MSB of SSID, with the last 3 bits of SSID being DCbits). The 
width is the number of bits used to store the HitCNT, for which we use 5bits for 
PIX layers, and 3 bits for SCT layers. 
The HitCNT for a specific full 14bit SSID will be stored in one of the 8 HCMs, i.e. 
HCM(i), the index i corresponds to the integer value of the 3LSB of its SSID (i.e. 
DCbits).  
 

2) HitListMemory(HLM) 
 
The HLM stores the hits, grouped by their SSID. (Note: the Data Formatter DF, 
which is upstream of the AUX card and sends out the hits, will group the hits 
according to their SSID, so all hits from a specific SSID will be sent out by the 
DF/received by the AUX consecutively.) To  make maximum usage of memory 
space, the hits are stored consecutively on the HLM, which is 10bit deep, and 



32bit wide for pix layers (32bit pix hits) and 16bit wide for sct layers (16bit sct 
hits).  
 

3) HitListPointer(HLP) 
 

Because the hits in the HLM are stored sequentially, a separate memory, HLP is 
created to store the address of the first hit with a specific SSID in the HLM. 
Hence the HLP is 14bit deep, corresponding to the 14bit SSID, and 10bit wide, 
corresponding to the address size of the HLM.  
 
A summary table of the on-chip memories and their resource usage is shown on 
Slide14.  

 

3. Logic Functionality 

The basic functionality and structure of DO has been briefly described in previous parts. A 
summary can be viewed on Slide6.  

The following paragraphs describe the WRITE mode and READ mode in further detail. Unless 
otherwise noted, the description is for ONE LAYER of DO structure, processing one hit input 
stream.  

a. WRITE mode 
 
Stores incoming hits according to its SSID. 
Data/Logic flow is as follows: 
 

1) Input from transceiver  
2) MLDATA 
3) MLADD 
Input from the transceiver are identified as either Hits or SSIDs. MidLatch(ML)s 
are registers that sends out the input when the latch request is on; they are put 
in for synchronization purposes and to streamline the data flow. Hits are sent to 
MLDATA; SSIDs to MLADD; where they are synchronized and sent out in pairs on 
the next rising clock edge. 
 

4) HLCtrl_WR 
 



As mentioned above, we do not clear the HitCntMem after each event; in the 
case of DC bits, there is the possibility of mismatching the AM SS (SSID – DCbits) 
from a previous event.  
We came up with the scheme of using 8 identical HCMs, each 11bits deep.  

The first hit of an AM SS is identified as the first hit with 11MSb of the SSID 
different from 11MSb of the SSID (i.e. AMSSID) of the previous hit. In the case of 
the first hit for that AMSSID, each address (addressed by that AMSSID) in all 8 
HCMs is cleared.  
To avoid clearing the same set of 8 HCM addresses multiple times within the 
same event, we use an 2^11=2048bit word DCReset to flag whether or not that 
set of HCM addresses have been cleared within the event. 

• DC_Reset 
o 2^11 bits, each bit is a Reset flag for each HCM address 

respectively 
o Entire DCReset word set to “0” at beginning of event 
o Corresponding bit set to “1” when the content in the HCM 

with respective addr. is cleared 
o Only clear the corresponding HCM when its bit inside the 

DCReset word is “0” 
So each HCM content could only be reset max once per event. 
 

For each 14bit SSID,  
AMSSID(10..0)<= SSID(13..3) 

– AMSSID(10..0) translated to an integer AMSS_index range 0 to 2^11 
to index which bit in the DC_Reset word this AMSSID(i.e. HCM address) 
correspond to. 

 DCBits(2..0) <= SSID(2..0) 
– DCBits(2..0) translated to an integer DCIndex range 0 to 7 

to index which one of the 8 HCMs to write to. 
 

The HLCtrl_WR can be roughly described as two parts. 
 

i. comparing fullSSID and calculate HitCnt 
 
HLCtrl_WR compares incoming SSID (WR_tempSSID) with previous SSID 
(WR_savedSSID), and increments the HitCnt (TempHitCnt) when it’s the 
same; if different, it means it’s a new SSID and the HitCnt starts counting 
from 0 again. 



 
Also in this part, the hit is being written to the HLM consecutively. In the 
case of a new SSID, the wraddr to the HLM is saved and written to the 
HLP with the address as the new SSID.  
 

ii. comparing AMSSID and decide which HCM to write to 
 
Incoming AMSSID[10..0] (WR_tempAMSSID) compared with previous 
AMSSID (WR_savedAMSSID) , simultaneously as fullSSID[13..0] is being 
processed as in part i above.  

– if Same 
 Write TempHitCnt to HCM[DC_Index] 

– if Different 
 Check DC_Reset[AMSS_Index] 

» if DC_Reset[AMSS_Index]=0 
  Reset all 8 HCM at addr=AMSSID 
  Write TempHitCnt (should be 1) to HCM[DC_Index] 

» if DC_Reset[AMSS_index]=1 
  Write TempHitCnt (should be 1) to HCM[DC_Index] 
 

A block diagram of the WRITE mode is shown in Slide8.  Slide15&16 contain a 
brief description of the control logic as detailed above.  
 
The resource usage summary for HLCtrl_WR is as follows: (shown for pix layer; 
sct layer similar) 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
+-----------------------------------------------------+ 
; Analysis & Synthesis Resource Usage Summary    ; 
HLCtrl_WR (pix layer) 
+---------------------------------------------+-------+ 
; Resource                                    ; Usage ; 
+---------------------------------------------+-------+ 
; Estimate of Logic utilization (ALMs needed) ; 1875  ; 
;                                             ;       ; 
; Combinational ALUT usage for logic          ; 2899  ; 
;     -- 7 input functions                    ; 8     ; 
;     -- 6 input functions                    ; 755   ; 
;     -- 5 input functions                    ; 2090  ; 
;     -- 4 input functions                    ; 4     ; 
;     -- <=3 input functions                  ; 42    ; 
;                                             ;       ; 
; Dedicated logic registers                   ; 2384  ; 
;                                             ;       ; 
; I/O pins                                    ; 256   ; 
; Total DSP Blocks                            ; 0     ; 
; Maximum fan-out                             ; 2384  ; 
; Total fan-out                               ; 24797 ; 
; Average fan-out                             ; 4.28  ; 
+---------------------------------------------+-------+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



b. Read Mode 
 
Sends out pre-stored hits corresponding to incoming RoadID; RoadID is translated into 
SSID by AMMap; output hits grouped by SSID 
Data/Logic flow is as follows: 
 

1) AMMap_int 
2) MLRDDATA/MLSectorID/MLLayerMap 
3) MLRDADD 
 
The DO receives the RoadID from the transceiver. On one hand, the RoadID is 
passed on through the MLRDDATA and sent out directly to the TF as part of the 
data stream; on the other hand, it is sent to the AMMap (stored on external 
memory) through the megawizard generated external memory interface 
(AMMAP_int).  
The AMMap translates the RoadID into SSID+DCFlag for each of the 8 layers 
(3pix+5sct), sent out on parallel streams, where the 3 pix layers are again split to 
6 by even/odd SSIDs, creating once again 11 parallel layers. The SSIDs and 
DCFlags are sent through MLRDADD to be latched at the next rising clock edge.  

- DCFlag is a 2bit word that indicates how many DCbits are used for 
that layer, hence 0 up to 3 DCbits can be used.  

» DCFlag, “00”, “01”,”10”,”11” 
» DCCnt= 0, 1, 2, 3 (No. of DCBits used) 
» DCCombNum = 1, 2, 4, 8 (No. of possible SSIDs) 

- DCComb(2..0): possible 3LSB of SSID with DC 
 

In the meantime, the AMMap also sends out LayerMap (which indicates whether 
or not that specific layer has hits), SectorID; together with ROADID, these 3 
pieces of information are passed through the respective MidLatches to be sent 
out to the TF downstream.  
 
4) HLCtrl_RD 

 
First, it calculates the possible DCComb(2..0) according to the 3LSB of SSID and 
the DCFlag 
 For i range 0 to DCCombNum-1 LOOP 

 If DCFlag = “00”, DCCombNum=1 
       tempDCComb(2..0)= SSID(2..0)  



 If DCFlag = “01”, DCCombNum=2 
tempDCComb(2..0)= SSID(2..1) + i (1 LSB) 

 If DCFlag = “10”,  DCCombNum=4 
tempDCComb(2..0)=SSID(2) + i (2 LSB) 

 If DCFlag = “11”,  DCCombNum=8 
tempDCComb(2..0)= i (3 LSB) 

tempDCIndex = to_integer(tempDCComb) 
DCIndex(tempDCIndex)=1, others=0 

hence, the possible DCComb are stored in DCIndex(7..0) by its integer value.  
 
Then, it loops over the possible DCCombs  
• For i range 0 to 7 LOOP 

– if DCIndex(i) = 0 
• not valid DCComb, check next DCComb, i = i+1 

– if DCIndex(i) = 1  
• valid DCComb 

calculate the corresponding fullSSID with this DCComb 
» DCComb(2..0) = std_logic_vector(to_unsigned(i,3)) 
» SSIDComb(13..0) = SSID(13..3)+ DCComb(2..0) 

• Read HitCntMem 
» Read out HitCnt corresponding to this fullSSID from 

HCM(i)  
 hcm_rdaddr(i) = SSID(13..3) 
 hcm_q(i) = HitCnt 

• Read HitListPointer 
» Read out  baseaddr i.e. addr. for the 1st hit with this 

fullSSID in the HLM from HLP 
 hlp_rdaddr = SSID(13..0) 
 hlp_q = hlm_baseaddr 

• Read HitListMem 
» Read out hits from HLM, consecutively starting from 

the baseaddr. retrieved from HLP. 
 hlm_rdaddr = hlm_baseaddr + tempCNT  
 for tempCNT range 0 to HitCNT-1 LOOP 

• if tempCNT = HitCNT, HitLast=1 
last hit with this fullSSID read out 

• if HitLast=1, check next DCComb, i = i+1 
– if i = 7, finished with current AMSSID, SSLast=1 



• If SSLast=1, fetch new SSID 
 

5) Output to TF 
 
Hits grouped by their SSIDs are sent out consecutively on each of the 8 layer parallel 
streams (the initial 3*2 pix layers are combined into 3 output pix layers, since only 
one in each pair would have output in either case of even or odd SSID for that pix 
layer).  
As stated before, the RoadID, LayerMap, and SectorIDs are also sent out to the TF. 
The state machine signals, as mentioned in the 2nd section of this note, are 
temporarily sent out to dummy outputs before the data format/control is finalized 
for the entire design.  
A block diagram of the READ mode is shown in Slide9.  Slide17&18 contain a brief 
description of the control logic as detailed above.  
The resource usage summary for HLCtrl_WR is as follows: (shown for pix layer; sct 
layer similar) 

+-----------------------------------------------------+ 
; Analysis & Synthesis Resource Usage Summary         ; 
HLCtrl_RD (pix layer) 
+---------------------------------------------+-------+ 
; Resource                                    ; Usage ; 
+---------------------------------------------+-------+ 
; Estimate of Logic utilization (ALMs needed) ; 200   ; 
; Combinational ALUT usage for logic          ; 80    ; 
;     -- 7 input functions                    ; 2     ; 
;     -- 6 input functions                    ; 16    ; 
;     -- 5 input functions                    ; 20    ; 
;     -- 4 input functions                    ; 11    ; 
;     -- <=3 input functions                  ; 31    ; 
; Dedicated logic registers                   ; 371   ; 
; I/O pins                                    ; 196   ; 
; Total DSP Blocks                            ; 0     ; 
; Maximum fan-out                             ; 371   ; 
; Total fan-out                               ; 1636  ; 
; Average fan-out                             ; 1.94  ; 
+---------------------------------------------+-------+ 
 

 



c. State Machine 
 
 The Entire DO (including the 2 duplicate copies inside) is controlled by a top_level FSM, 
 which consists of 2 FSMs for each copy of the DO, i.e. DO1fsm and DO2fsm.  
 DO1fsm and DO2fsm are identical with one small difference. Both have 4 possible 
 states: 

– state_write,  
• writing in new hits 
• switch to WRready when hitEE=1 i.e. end of event, last hit in event  

– state_WRready,   
• wait for the other DO to finishing reading 
• switch to READ when the other DO is in WRITE mode 

– state_read,   
• reading out hits 
• switch to Rdready when last=1 or empty=1 i.e. all hits in that SSID read 

out 
– state_RDready, 

• wait for the other DO to finish writing 
• switch to WRITE when the other DO is in READ mode 

the only difference between the two being that DO1 start in state_write;  DO2 start in 
state_RDready. The choice of DO1(2) is arbitrary in the beginning.  
Summary of FSM, see Slide10. 
 

 
4. Resource Usage 
 

a. Memory Usage 
 
 Most of the DO memory usage are for the on-chip memories. We use megawizard 
 generated RAMS for these memories. The sizes of them are tabulated in Slide13.  
 Note the final memory usage =  
  [(HCMPIX*8*3*2Layers+HCMSCT*5Layers)+ 
  (HLPPIX*3*2Layers+HLPSCT*5Layers)+ 
  (HLMPIX*3*2Layers+HLMSCT*5Layers)]*2copies of DO 
  + mem. usage for ext. mem. interface 
 which brings to 5.6Mb in total, and 7Mb when implemented on-chip. 
 

b. Logic Usage 



 
 Most of the DO logic usage are for the HLCtrl_WR and HLCtrl_RD functionalities. Note 
 the usage for HLCtrl _WR is almost an order of magnitude larger than HLCtrl_RD: this is 
 mostly due to the 2^11-bit long DC_Reset word we are using to flag whether or not that 
 specific HCM address has been cleared.   
 A tabulated summary of the logic usage is shown on Slide14.  
 

c. Total Resource Usage 
 
See attached file. 

 
 
 

 
5. Timing and Other Issues 
 
(Work in progress.) 
Right now the HLCtrl_WR logic can handle consecutive incoming hits at 200MHz clock rate; the 
HLCtrl_RD logic can handle consecutive incoming SSIDs at 200MHz clock rate (with a few 
relatively  minor bugs to be worked out); the external memory interface, according to the 
Quartus Megawizard generated testbench, can read from  the external memory at random at 
200MHz clock rate. The full testbench simulation is still in progress. 
The full DO, when compiled alone on-chip, operates at around 140MHz.  
  
A few things to note: 

a. data format w.r.t. input from transceiver and output to DO 
b. enable/state machine/error flag signal propagation through the system 
c. synchronization within internal logic: making sure information to/from the on-chip 

memories are on the right clock edges 
d. multi-layer synchronization 
e. large logic usage may be problematic 
f. warnings/timing issues w.r.t. ext. mem. interface  
g. warnings/timg issues w.r.t. the whole system 


