
HTT Processor and Mezzanines Cooling

Mircea Bogdan 7/26/2018

The University of Chicago

EPE - Mezzanine FPGA - Power

Thermal

Return to Main

Errors (0)

Calculation Mode	Solve for Maximum Tj
Apply Recommended Margin	No

Ambient Temp, T _A (°C)	25
Max. Junction Temp, T _{J-MAX} (°C)	80

Family	Stratix 10
Device	1SM21BH
Device Grade	Extended -3 Smart-VID
Package	F53
Transceiver Grade	HN3
Compact Model Name	1SM21BH_N_F53

The following values assume $T_J = T_{J-MAX}$ for at least one of the dies in the package. Note that other dies in the package are typically below T_{J-MAX} .

Recommended Ψ _{CA} (°C/W)	0.441
Max. Ψ _{Jc} (°CW)	0.163
Case Temperature T _{CASE} (°C)	65

FPGA Core Power (W) 70.18

Transceiver Thermal Power (W)	
HSSI_2_1	0.00
HSSI_1_1	0.00
HSSI_0_1	0.00

HBM Thermal Power (W)	
HBM TOP_0	6.30
HBM BOT_0	6.30

FPGA Core Ψ_{xc} (°C/W) 0.106

Transceiver Die Ψ _{JC} (°C/W)	
HSSI_2_1	0.000
HSSI_1_1	0.000
HSSI_0_1	0.000

HBM Die Ψ _{JC} (°CW)	
HBM TOP_0	0.163
HBM BOT_0	0.161

FPGA Core TSD Offset (°C) 0

Transceiver Die TSD Offset (°C)	
HSSI_2_1	0
HSSI_1_1	0
HSSI_0_1	0

EPE - Mezzanine FPGA - Bottom

HSSI_2_0	6.55
HSSI_1_0	0.00
HSSI_0_0	1.73

Total Power ~ 91W

80% Logic, 500MHz, HBM, etc.

http://edg.uchicago.edu/~bogdan/HTT_TrackFitterMezzanine/misc/stratix10_epe_TEST_1.xls

HSSI_2_0	0.047
HSSI_1_0	0.000
HSSI 0 0	-0.036

HSSI 1 0

Max Junction Temp ~ 80C Max Case Temp ~ 65C Air ~ 25C

Heat Sink ~ 0.44C/W

Parameter variation with FPGA core junction temperature. Three values are provided for each parameter.

The middle row contains FPGA core temperature and other parameters assuming the recommended Ψ_{ca} value above.

The top row provides values of all parameters when FPGA core temperature is 5 degrees lower than in the middle row.

The bottom row provides values of all parameters when FPGA core temperature is 5 degrees higher than in the middle row. The rows are color-coded, as follows:

the rows are color-coded, as follows:

Acceptable cooling solutions - all junction temperatures are at or below Max. Junction Temp, T_{J-MAX}.

Unacceptable cooling solutions - one or more junction temperatures are above Max. Junction Temp, T_{J-MAX.}

							$\Psi_{\rm sc}({}^{\circ}{}^{\circ}{}^{c}/{}^{W})$							
FPGA Core Junction Temperature (°C)	FPGA Core Power (W)	Overall Total Power (W)	Case Temperature T _{CASE} (°C)	Max. Junction Temperature (°C)	Ψ _{CA} (°CIW)	FT	# HSSI_0_0	HSSI_1_0	HSSI_2_0	HSSI_0_1	HSSI_1_1	HSSI_2_1	НВМ ТОР_0	нвм вот_0
70	68.31	88.96	60	75	0.398	06	-0.037	0.000	0.048	0.000	0.000	0.000	0.168	0.167
75	70.18	91.05	65	80	0.441	U.108	-0.036	0.000	0.047	0.000	0.000	0.000	0.163	0.161
80	72.26	93.37	70	85	0.480	0.106	-0.035	0.000	0.046	0.000	0.000	0.000	0.157	0.155

Thermal

Return to Main

Errors (0)

Calculation Mode	Solve for Maximum Tj
Apply Recommended Margin	No
Ambient Temp, T _A (°C)	35

Family	Stratix 10
Device	1SM21BH
Device Grade	Extended -3 Smart-VID
Package	F53
Transceiver Grade	HN3
Compact Model Name	1SM21BH_N_F53

The following values assume $T_J=T_{J-MAX}$ for at least one of the dies in the package. Note that other dies in the package are typically below T_{J-MAX}.

Recommended Ψ _{CA} (°CW)	0.331
Max. Ψ _{JC} (°C/W)	0.163
Case Temperature T _{GASE} (°C)	65
FPGA Core Power (W)	70.19
	2
Transceiver Thermal Power (W)	
HSSI_2_1	0.00
HSSI_1_1	0.00
HSSI_0_1	0.00
	-
HBM Thermal Power (W)	
HBM TOP_0	6.30
HBM BOT_0	6.30
7	
FPGA Core Ψ _{IC} (°CW)	0.106
	-
Transceiver Die Ψ _{IC} (°CW)	
HSSI_2_1	0.000
HSSI_1_1	0.000
HSSI_0_1	0.000
HBM Die Ψ _{JC} (°CW)	
HBM TOP 0	0.163
HBM BOT_0	0.161
FPGA Core TSD Offset (°C)	0
Transceiver Die TSD Offset (°C)	
HSSI_2_1	0
HSSL 1 1	0

EPE - Mezzanine FPGA - Top

HSSI_2_0	6.55
HSSI_1_0	0.00
HSSI 0 0	1.73

Total Power ~ 91W

80% Logic, 500MHz, HBM, etc.

http://edg.uchicago.edu/~bogdan/HTT_TrackFitterMezzanine/misc/stratix10_epe_TEST_1.xls

HSSI_2_0	0.047
HSSI_1_0	0.000
HSSI_0_0	-0.036

Max Junction Temp ~ 80C Max Case Temp ~ 65C Air ~ 35C (Not yet Confirmed) Heat Sink ~ 0.33C/W

HSSI_2_0	4
HSSI_1_0	0
HSSI_0_0	0

Parameter variation with FPGA core junction temperature. Three values are provided for each parameter. The middle row contains FPGA core temperature and other parameters assuming the recommended $m{arphi}_{\!A}$ value above. The top row provides values of all parameters when FPGA core temperature is 5 degrees lower than in the middle row. The bottom row provides values of all parameters when FPGA core temperature is 5 degrees higher than in the middle row. The rows are color-coded, as follows: Acceptable cooling solutions - all junction temperatures are at or below Max. Junction Temp, $\mathsf{T}_{\mathsf{FMAX}}$

Unacceptable cooling solutions - one or more junction temperatures are above Max. Junction Temp, T. MAX.

							Ψ_{ic} (°C/W)												
FPGA Core Junction Temperature (°C)	FPGA Core Power (W)	Overall Total Power (W)	Case Temperature T _{CASE} (°C)	Max. Junction Temperature (°C)	Ψ _{CA} (°C/	Core	HSSI_0_0	HSSI_1_0	HSSI_2_0	HSSI_0_1	HSSI_1_1	HSSI_2_1	НВМ ТОР_0	нвм вот_0 5					
70	68.32	88.97	60	75	0.285	U.106	-0,037	0.000	0.048	0.000	0.000	0.000	0,168	0.167					
75	70.19	91.06	65	80	0.331	0.106	-0.036	0.000	0.047	0.000	0.000	0.000	0.163	0.161					
80	72.26	93.38	70	85	0.373	0.106	-0.035	0.000	0.046	0.000	0.000	0.000	0.157	0.155					

Heat Sink - 1

> \$200/piece
> 2Lb/piece

Needs Solid Mechanical Attachment

130x130x13mm Heat Sink ~1kg.

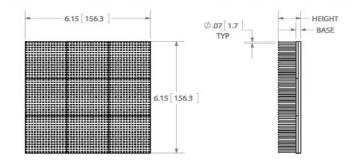
COOLINNOVATIONS ADVANCED HEAT SINKS

FOOTPRINT 6.15" X 6.15"

MODERATE CONFIGURATION | COPPER

SPECIFICATIONS

Overview

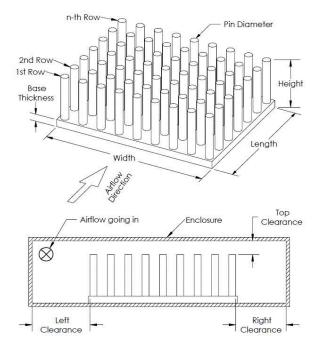

- · Provides outstanding cooling power
- · Rapid heat spreading
- Composed of nine forged heat sinks that are brazed on a copper base
- Recommended airspeed range: 400 to 1,000 LFM (2 to 5 m/s)
- · RoHS compliant

Technical

- · Material: Pure Copper
- · Mfg. process: Cold forging
- Plating options: Electroless nickel, black zinc
- Base finish: Lapped Flatness: Better than 0.001 in/in Surface roughness: 16 RMS

Flexible Parameters

- · Footprint (length and width)
- · Height (pin length & base thickness)
- Single or multiple pins can be eliminated
- Comprehensive machining (holes, threads, clearances, etc.)


THE PIN FIN APPROACH: Round pin formations produce outstanding cooling power

P/N	Height in(mm)	Base in(mm)	Weight lb(g)	Thermal Re 200(1)*	sistance in °C/\ 400(2)	W 600(3)	800(4)
4-626203U	0.30(7.6)	0.16(3.9)	2.26(1024)	1.3	0.77	0.54	0.41
4-626204U	0.40(10.2)	0.17(4.4)	2.68(1217)	0.74	0.41	0.28	0.21
4-626205U	0.50(12.7)	0.17(4.4)	2.93(1330)	0.52	0.28	0.19	0.14
4-626206U	0.60(15.2)	0.20(5.2)	3.47(1576)	0.40	0.21	0.14	0.11
4-626207U	0.70(17.8)	0.20(5.2)	3.73(1690)	0.32	0.17	0.12	0.084
4-626208U	0.80(20.3)	0.20(5.2)	3.98(1804)	0.27	0.15	0.097	0.071
4-626209U	0.90(22.9)	0.24(6.0)	4.54(2059)	0.24	0.13	0.084	0.062
4-626210U	1.00(25.4)	0.24(6.0)	4.79(2172)	0.21	0.11	0.073	0.055
4-626211U	1.10(27.9)	0.24(6.0)	5.04(2286)	0.19	0.10	0.066	0.049
4-626212U	1.20(30.5)	0.24(6.0)	5.29(2400)	0.17	0.090	0.060	0.044
Disclaimer: www	w.coolinnovations.	com					*Air Speed in LFM (m/s)

www.coolinnovations.com • sales@coolinnovations.com • Tel: (905) 760-1992 • Fax: (905) 760-1994

Heat Sink - 2 No Quote Yet

Example 1

Home Standard Heat Sinks Custom Heat Sinks Heat Pipe Solutions Calculation Tools Learning Center

About & Contact

Advanced Round Pin Heat Sink Calculator

Your Input: Parameters Used in Calculation

Material: Copper (pure) Pin Diameter: 1 mm Width of Heat Source: 45.0

Width: 150 mm Number of Rows: 50 mm

Length: 150 mm Pins Per Row: 50 Length of Heat Source:

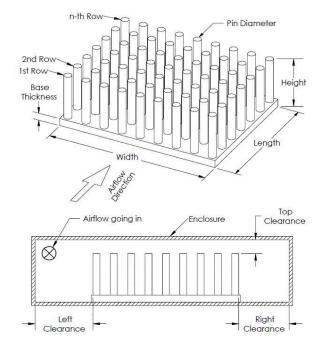
Height: 15 mm Ambient Temperature: 47 45.0 mm

Base Thickness: 3 mm °C Top Clea

s: 3 mm °C Top Clearance: 4.5 mm Heat to Dissipate: 90 W Left Clearance: 1.0 mm

Right Clearance: 1.0 mm

Calculation Result: Thermal Resistance, Pressure Drop & Base Temperature


Airflow Rate	Thermal Resistance	Pressure Drop	Base Temperature
0.5 m/s (~100 LFM)	0.30 °C/W	2.51 Pa (0.010 inH ₂ O)	74.4 °C
1.0 m/s (~200 LFM)	0.23 °C/W	7.50 Pa (0.030 inH ₂ O)	68.1 °C
1.5 m/s (~300 LFM)	0.21 °C/W	14.69 Pa (0.059 inH ₂ O)	65.5 °C
2.0 m/s (~400 LFM)	0.19 °C/W	24.01 Pa (0.096 inH ₂ O)	64.1 °C
2.5 m/s (~500 LFM)	0.18 °C/W	35.47 Pa (0.142 inH ₂ O)	63.1 °C
3.0 m/s (~600 LFM)	0.17 °C/W	49.04 Pa (0.197 inH ₂ O)	62.4 °C
3.5 m/s (~700 LFM)	0.16 °C/W	64.73 Pa (0.260 inH ₂ O)	61.8 °C
4.0 m/s (~800 LFM)	0.16 °C/W	82.54 Pa (0.331 inH ₂ O)	61.4 °C
4.5 m/s (~900 LFM)	0.16 °C/W	102.47 Pa (0.411 in H ₂ O)	61.0 °C
5.0 m/s (~1,000 LFM)	0.15 °C/W	124.51 Pa (0.500 in H ₂ O)	60.7 °C

Please click here to request a quote for this heat sink.

The calculation result is for reference only. Customers are advised to build and test prototypes for all design projects.

Heat Sink - 2 No Quote Yet

Example 2

Home Standard Heat Sinks Custom Heat Sinks Heat Pipe Solutions Calculation Tools Learning Center

About & Contact

Advanced Round Pin Heat Sink Calculator

Your Input: Parameters Used in Calculation

Material: Copper (pure) Pin Diameter: 1 mm Width of Heat Source: 45.0

Width: 130 mm Number of Rows: 50

Length: 130 mm Pins Per Row: 50 Length of Heat Source:

Height: 15 mm Ambient Temperature: 47

Base Thickness: 3 mm °C

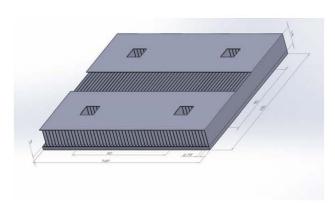
°C Top Clearance: 4.5 mm Heat to Dissipate: 90 W Left Clearance: 1.0 mm

mm

45.0 mm

Right Clearance: 1.0 mm

Calculation Result: Thermal Resistance, Pressure Drop & Base Temperature

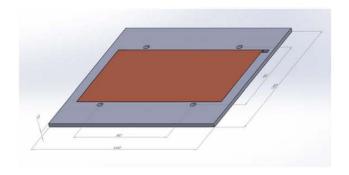

Airflow Rate	Thermal Resistance	Pressure Drop	Base Temperature
0.5 m/s (~100 LFM)	0.30 °C/W	2.59 Pa (0.010 inH ₂ O)	73.7 °C
1.0 m/s (~200 LFM)	0.22 °C/W	7.92 Pa (0.032 inH ₂ O)	66.7 °C
1.5 m/s (~300 LFM)	0.19 °C/W	15.60 Pa (0.063 inH ₂ O)	64.0 °C
2.0 m/s (~400 LFM)	0.17 °C/W	25.56 Pa (0.103 inH ₂ O)	62.5 °C
2.5 m/s (~500 LFM)	0.16 °C/W	37.75 Pa (0.152 inH ₂ O)	61.5 °C
3.0 m/s (~600 LFM)	0.15 °C/W	52.18 Pa (0.209 inH ₂ O)	60.8 °C
3.5 m/s (~700 LFM)	0.15 °C/W	68.83 Pa (0.276 inH ₂ O)	60.2 °C
4.0 m/s (~800 LFM)	0.14 °C/W	87.71 Pa (0.352 inH ₂ O)	59.8 °C
4.5 m/s (~900 LFM)	0.14 °C/W	108.81 Pa (0.437 inH ₂ O)	59.4 °C
5.0 m/s (~1,000 LFM)	0.13 °C/W	132.14 Pa (0.530 inH ₂ O)	59.1 °C

Please click here to request a quote for this heat sink.

The calculation result is for reference only. Customers are advised to build and test prototypes for all design projects.

Heat Sink - 3

Forced Convection Fin Pack with Vapor Chamber Base


Module Dimension:W160*L150*H18mm

Base thickness:3mm

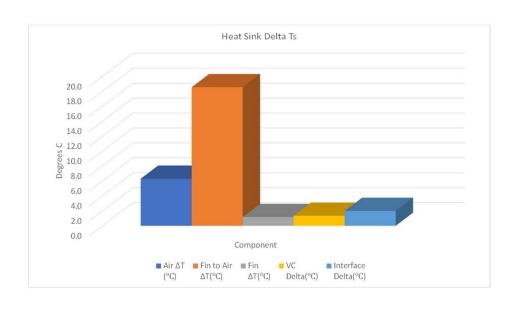
VC dimension: 82*145*3.0mm

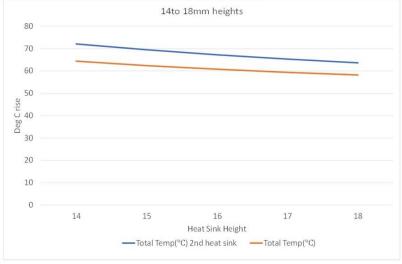
Fin hight:15mm
Fin Gap:2.75mm

Fin thickness:0.3mm

~\$335/piece + NRE (~\$6K) ~490g/piece

Celsia Confidential

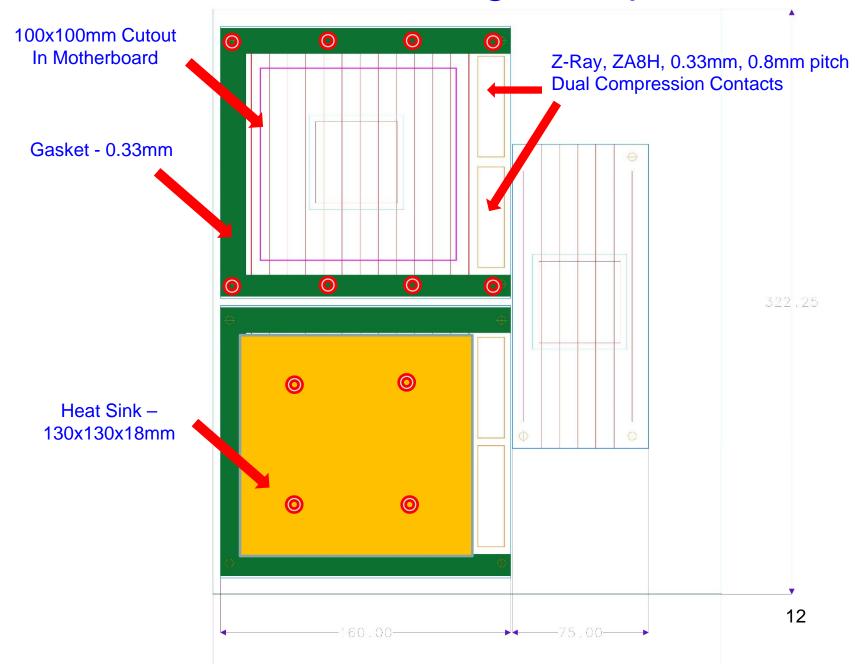

Heat Sink - 3


Simulation Received from Celsia Inc. Results for 11 - 15mm Fin Heights

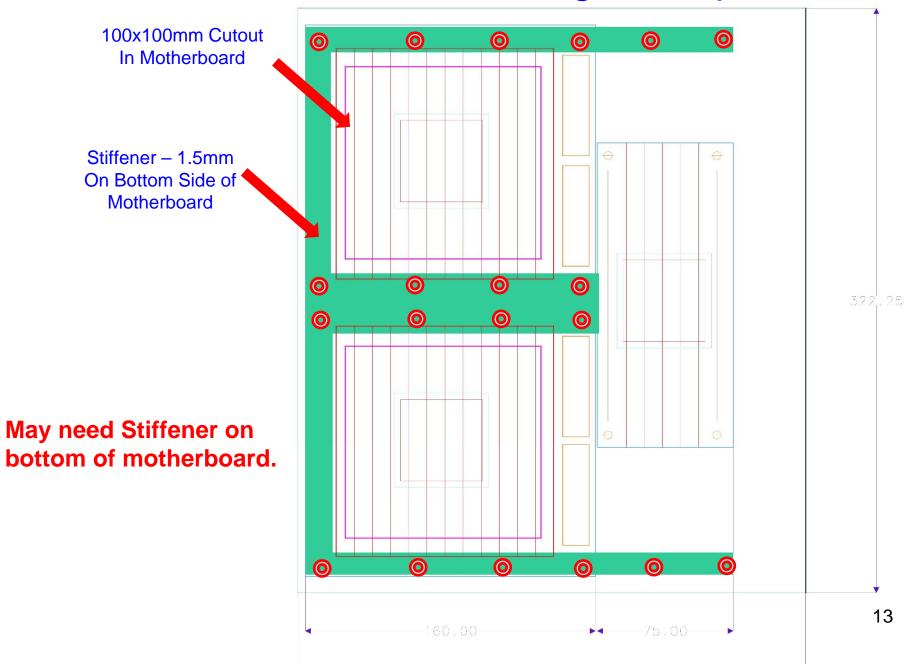
Series heat sinks

Q (W)	Source x	Source y	Source cm2	w/cm2	Ta (℃)	Finned W (mm)	Fin L (mm)	Fin H (mm)	Fin t (mm)	Base t Z (mm)	Total Height mm	Fin gap (mm)	CFM	Fin K (W/mk)	HPP	Fin's (pcs)	Fin area (ft^2)	Air ∆T (°C)	Fin to Air $\Delta T(\mathbb{C})$	Fin $\Delta T(^{\circ}\mathbb{C})$	VC Delta(°C)	The second secon	HS Temp rise(℃)	Total Temp(℃)	Rth HS	Rth total
91	4.5	4.5	20	4.5	35	160	150	11	0.3	3	14	2.75	15	180	1	52	1.9	6.3	18.6	1.2	1.3	2	29	64	0.32	0.71
91	4.5	4.5	20	4.5	35	160	150	12	0.3	3	15	2.75	17	180	1	52	2.0	5.8	17.0	1.3	1.3	2	27	62	0.30	0.69
91	4.5	4.5	20	4.5	35	160	150	13	0.3	3	16	2.75	18	180	1	52	2.2	5.3	15.7	1.4	1.3	2	26	61	0.28	0.67
91	4.5	4.5	20	4.5	35	160	150	14	0.3	3	17	2.75	19	180	1	52	2.4	5.0	14.6	1.5	1.3	2	24	59	0.27	0.65
91	4.5	4.5	20	4.5	35	160	150	15	0.3	3	18	2.75	21	180	1	52	2.5	4.6	13.6	1.6	1.3	2	23	58	0.25	0.64

2nd he	at sink														2	5		u					Total Te	$mp(^{\circ}\mathbb{C})2nd$	heat sink	
91	4.5	4.5	20	4.5	48	160	150	11	0.3	3	14	2	15	180	1	70	2.5	6.3	14.0	0.9	1.3	2	25	72	0.27	0.79
91	4.5	4.5	20	4.5	47	160	150	12	0.3	3	15	2	17	180	1	70	2.7	5.8	12.8	1.0	1.3	2	23	69	0.25	0.76
91	4.5	4.5	20	4.5	46	160	150	13	0.3	3	16	2	18	180	1	70	2.9	5.3	11.8	1.0	1.3	2	22	67	0.24	0.74
91	4.5	4.5	20	4.5	45	160	150	14	0.3	3	17	2	19	180	1	70	3.1	5.0	11.0	1.1	1.3	2	20	65	0.22	0.72
91	4.5	4.5	20	4.5	44	160	150	15	0.3	3	18	2	21	180	1	70	3.4	4.6	10.3	1.2	1.3	2	19	64	0.21	0.70


Comments – Questions -1

We have to reduce the gap between motherboards and mezzanines.


- Mezzanine Connectors Height < 0.5mm?
- Samtec Z-Ray Interposers?
- Can we cut hole in the mother board under each mezzanine card?
- Will mother board stay mechanically strong?
- Heavy Mezzanine Cards
 - Crate Manufacturer Discussion Needed?
 - We have to build and test dummy boards

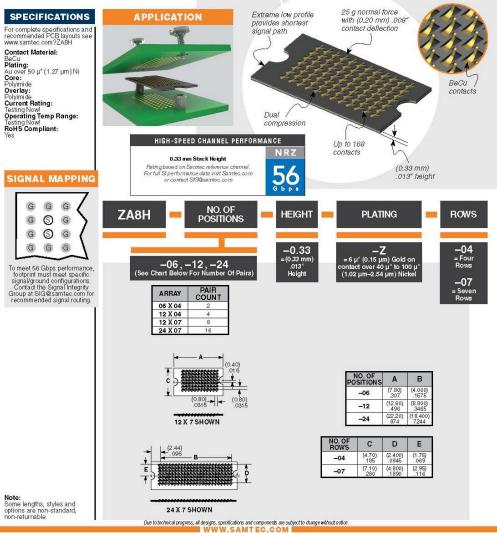
Have to make sure the entire system is structurally sound before everything else

Mezzanine Mounting Example

Mezzanine Mounting Example

Z-Ray - ZA8H

Need to test this?



(0.80 mm) .0315"

HIGH-SPEED DUAL COMPRESSION ARRAYS

All parts within this catalog are built to Samtec's specifications.

Customer specific requirements must be approved by Samtec and identified in a Samtec customer-specific drawing to apply.

Comments – Questions -3

- Over 360W/slot Not a Trivial Issue
- It looks like it can be done with sufficient power and cooling

Thermal Simulation in Steps:

- Simulate one and two mezzanines
 - In Chicago, we plan to download and test FloTERM in the next few weeks. We'll see how this goes.
- One full ATCA Blade and the Full Crate will need to be simulated in the future.
- Does vendor simulate the crates they manufacture?

Comments - Questions - 4

We have to agree about acceptable architecture: connectors, PCB geometries, PCB cutouts, etc. before we start simulating.

If we end up with not enough margin:

Double width ATCA Carrier Blade?