1500 Watt MOSORB

GENERAL DATA APPLICABLE TO ALL SERIES IN THIS GROUP

Zener Transient Voltage Suppressors
Unidirectional and Bidirectional

Mosorb devices are designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are Motorola’s exclusive, cost-effective, highly reliable Surmetic axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

Specification Features:
- Standard Voltage Range — 6.2 to 250 V
- Peak Power — 1500 Watts @ 1 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5 µA Above 10 V
- UL Recognition
- Response Time is Typically < 1 ns

Mechanical Characteristics:
- **CASE:** Void-free, transfer-molded, thermosetting plastic
- **FINISH:** All external surfaces are corrosion resistant and leads are readily solderable
- **POLARITY:** Cathode indicated by polarity band. When operated in zener mode, will be positive with respect to anode
- **MOUNTING POSITION:** Any
- **WAFER FAB LOCATION:** Phoenix, Arizona
- **ASSEMBLY/TEST LOCATION:** Guadalajara, Mexico

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Power Dissipation (1) @ TL ≤ 25°C</td>
<td>PPK</td>
<td>1500</td>
<td>Watts</td>
</tr>
<tr>
<td>Steady State Power Dissipation @ TL ≤ 75°C, Lead Length = 3/8” Derated above TL = 75°C</td>
<td>PD</td>
<td>5</td>
<td>Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>mW/°C</td>
</tr>
<tr>
<td>Forward Surge Current (2) @ TA = 25°C</td>
<td>IFSM</td>
<td>200</td>
<td>Amps</td>
</tr>
<tr>
<td>Operating and Storage Temperature Range</td>
<td>TJ, Tstg</td>
<td>-65 to +175</td>
<td>°C</td>
</tr>
</tbody>
</table>

Lead temperature not less than 1/16” from the case for 10 seconds: 230°C

NOTES: 1. Nonrepetitive current pulse per Figure 5 and derated above TA = 25°C per Figure 2.
2. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.
ELECTRICAL CHARACTERISTICS \(T_A = 25^\circ \text{C} \) unless otherwise noted \(V_F = 3.5 \text{ V max}, I_F^* = 100 \text{ A} \)

<table>
<thead>
<tr>
<th>Device Note 1</th>
<th>Breakdown Voltage</th>
<th>Maximum Reverse Stand-Off Voltage (V_{RWM}^*) (Volts)</th>
<th>Maximum Reverse Leakage @ (I_{RSM}^\dagger = 120 \text{ A}) (Clamping Voltage)</th>
<th>Maximum Reverse Voltage @ (I_{RSM}^\dagger = 120 \text{ A}) (Volts)</th>
<th>Clamping Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(V_{BR}^\dagger)(\dagger) (Volts) Min</td>
<td>(@ I_T) (mA)</td>
<td>(@ V_{RWM}^*) (Volts)</td>
<td>(V_{RSM}) (Volts)</td>
<td>(V_{C1}) (Volts max)</td>
</tr>
<tr>
<td>1N5908</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>300</td>
<td>8.5</td>
</tr>
</tbody>
</table>

NOTE 1: The 1N5908 is JEDEC registered as a unidirectional device only (no bidirectional option).

* Indicates JEDEC registered data.

** 1/2 sine wave (or equivalent square wave), \(PW = 8.3 \text{ ms}, \text{ duty cycle} = 4 \text{ pulses per minute maximum.} \)

*** A transient suppressor is normally selected according to the maximum reverse stand-off voltage \((V_{RWM}) \), which should be equal to or greater than the dc or continuous peak operating voltage level.

\(\dagger \) Surge current waveform per Figure 5 and derate per Figure 2 of the General Data — 1500 W at the beginning of this group.

\(\dagger \dagger \) \(V_{BR} \) measured at pulse test current \(I_T \) at an ambient temperature of 25°C.
Motorola TVS/Zener Device Data

Figure 1. Pulse Rating Curve

Figure 2. Pulse Derating Curve

Figure 3. Capacitance versus Breakdown Voltage

Figure 4. Steady State Power Derating

Figure 5. Pulse Waveform

Devices listed in bold, italic are Motorola preferred devices.

Motorola TVS/Zener Device Data

500 Watt Peak Power Data Sheet

4-3
APPLICATION NOTES

RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure A.

The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure B. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by Z_{in} is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

DUTY CYCLE DERATING

The data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.

At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 μs pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.
TYPICAL PROTECTION CIRCUIT

\[Z_{in} \]

\[V_{in} \quad L \quad V_{L} \]

T D = TIME DELAY DUE TO CAPACITIVE EFFECT

V in (TRANSIENT)

\[V_{in} \quad V_{L} \quad t_{D} \]

Figure 8.

OVERSHOOT DUE TO INDUCTIVE EFFECTS

UL RECOGNITION*

The entire series has Underwriters Laboratory Recognition for the classification of protectors (QVGV2) under the UL standard for safety 497B and File #116110. Many competitors only have one or two devices recognized or have recognition in a non-protective category. Some competitors have no recognition at all. With the UL497B recognition, our parts successfully passed several tests including Strike Voltage Breakdown test, Endurance Conditioning, Temperature test, Dielectric Voltage-Withstand test, Discharge test and several more.

Whereas, some competitors have only passed a flammability test for the package material, we have been recognized for much more to be included in their Protector category.

*Applies to 1.5KE6.8A, CA thru 1.5KE250A, CA

Devices listed in bold, italic are Motorola preferred devices.
Motorola TVS/Zener Device Data

Transient Voltage Suppressors — Axial Leaded

1500 Watt Peak Power

CASE 41A-02
PLASTIC

(Refer to Section 10 for Surface Mount, Thermal Data and Footprint Information.)

MULTIPLE PACKAGE QUANTITY (MPQ) REQUIREMENTS

<table>
<thead>
<tr>
<th>Package Option</th>
<th>Type No. Suffix</th>
<th>MPQ (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape and Reel</td>
<td>RL4</td>
<td>1.5K</td>
</tr>
</tbody>
</table>

(Refer to Section 10 for more information on Packaging Specifications.)

NOTES:
2. CONTROLLING DIMENSION, INCH.
3. LEAD FINISH AND DIAMETER UNCONTROLLED IN DIM P.

<table>
<thead>
<tr>
<th>DIM</th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.190</td>
<td>4.83</td>
</tr>
<tr>
<td></td>
<td>0.205</td>
<td>5.21</td>
</tr>
<tr>
<td>D</td>
<td>0.028</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td>1.07</td>
</tr>
<tr>
<td>K</td>
<td>1.000</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P</td>
<td>0.050</td>
<td>1.27</td>
</tr>
</tbody>
</table>