
SCBS226F - JULY 1993 - REVISED AUGUST 1996

- Support the VME64 ETL Specification
- Reduced, TTL-Compatible, Input Threshold Range
- High-Drive Outputs ($I_{OH} = -60 \text{ mA}$, I_{OL} = 90 mA) Support 25- Ω Incident-Wave **Switching**
- **V_{CC}BIAS** Pin Minimizes Signal Distortion **During Live Insertion**
- Internal Pullup Resistor on OE Keeps **Outputs in High-Impedance State During Power Up or Power Down**
- **Members of the Texas Instruments (TI)** *Widebus*™ Family
- State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation
- Distributed V_{CC} and GND Pin Configuration **Minimizes High-Speed Switching Noise**
- 25- Ω Series Damping Resistor on B Port
- Bus Hold on Data Inputs Eliminates the **Need for External Pullup Resistors**
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-Mil Fine-Pitch Ceramic Flat (WD) Packages Using 25-mil Center-to-Center Spacings

SN54ABTE16245 . . . WD PACKAGE SN74ABTE16245 . . . DGG OR DL PACKAGE (TOP VIEW)

description

The 'ABTE16245 are 16-bit (dual-octal) noninverting 3-state transceivers designed for synchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements. These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has a $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs are also found on the B port to hold unused or floating inputs at a valid logic level.

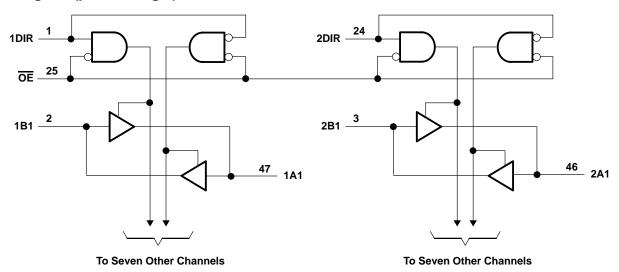
The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

The SN74ABTE16245 is available in TI's shrink small-outline package (DL), which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN54ABTE16245 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABTE16245 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated.



SCBS226F - JULY 1993 - REVISED AUGUST 1996

FUNCTION TABLE (each 8-bit section)

INP	UTS	ODED ATION
ŌĒ	DIR	OPERATION
L	L	A data to B bus
L	Н	B data to A bus
Н	X	Isolation

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, V _O	0.5 V to 5.5 V
Current into any output in the low state, I _O	128 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): DGG package	0.85 W
DL package	1.2 W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the *ABT Advanced BiCMOS Technology Data Book*.

SN54ABTE16245, SN74ABTE16245 16-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCBS226F - JULY 1993 - REVISED AUGUST 1996

recommended operating conditions (see Note 3)

			SN54	ABTE16	3245	SN74	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
\/	High-level input voltage	ŌĒ	2			2			V
VIH	r ligh-level input voltage	Except OE	1.6			1.6			٧
\/	Low-level input voltage	ŌĒ			0.8			0.8	V
VIL	Low-level input voltage	Except OE			1.4			1.4	٧
٧ _I	Input voltage		0		VCC	0		VCC	V
la	High-level output current	B bus			-12			-12	mA
ЮН	nigii-level output current	A bus			-24			-60	IIIA
la.	Low-level output current	B bus			12			12	mΑ
IOL	Low-level output current	A bus		64			90	IIIA	
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: Unused pins (input or A-bus I/O) must be held high or low to prevent them from floating.

SCBS226F - JULY 1993 - REVISED AUGUST 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST C	ONDITIONS	SN	54ABTE1	6245	SN	74ABTE	16245	UNIT
PAI	RAMETER	l lesi c	ONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNII
VIK		$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 5.5 \text{ V},$	$I_{OH} = -100 \mu A$			V _{CC} -0.2			V _{CC} -0.2	
	B port	V45V	I _{OH} = -1 mA	2.4			2.4			
\/a		V _{CC} = 4.5 V	$I_{OH} = -12 \text{ mA}$	2			2			V
VOH		$V_{CC} = 5.5 \text{ V},$	I _{OH} = -1 mA			4.5			4.5	V
	A port	V _{CC} = 4.5 V	I _{OH} = -32 mA	2.4			2.4			
		VCC = 4.5 V	I _{OH} = -64 mA				2			
	D nort	V=== 4 5 V	I _{OL} = 1 mA			0.4			0.4	
\/~.	в роп	V _{CC} = 4.5 V	I _{OL} = 12 mA						0.8	V
VOL	VOL A port	V _{CC} = 4.5 V	$I_{OL} = 64 \text{ mA}$			0.55			0.55	V
	A port	VCC = 4.5 V	I _{OL} = 90 mA						0.9	
		V _{CC} = 4.5 V	V _I = 0.8 V	100			100			
I _I (hold)	B port		V _I = 2 V	-100			-100			μΑ
	Control inputs A or B ports A port	$V_{CC} = 5.5 \text{ V},$	V _I = 0 to 5.5 V			±500			±500	
١.	Control inputs	$V_{CC} = 5.5 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	μА
יו	A or B ports	$V_{CC} = 5.5 \text{ V},$	$V_I = V_{CC}$ or GND			±20			±20	μΑ
lozh [‡]	A port	$V_{CC} = 5.5 \text{ V},$	V _O = 2.7 V			10			10	μΑ
lozL [‡]	A port	$V_{CC} = 5.5 \text{ V},$	V _O = 0.5 V			-10			-10	μΑ
lo.	A port	V _{CC} = 5.5 V,	VO =25.5 v	-50	-120	-180	-50		-180	mA
10	B port	VCC = 5.5 V,	V() = 2.5 V	-25	-52	-90	-25		-90	IIIA
l _{off}		$V_{CC} = 0$, V_I or $V_O \le$	4.5 V, V _{CC} BIAS = 0			±100			±100	μΑ
		V _{CC} = 5.5 V,	Outputs high		28	36		28	36	
ICC	A or B ports	$I_{O} = 0$,	Outputs low		38	48		38	48	mA
	A port I (hold) B port Control inputs A or B ports A port A port A port B port C	$V_I = V_{CC}$ or GND	Outputs disabled		20	32		20	32	
loop	A or B ports	V _{CC} = 5 V,	OE high		0.02			0.02		mA/
ICCD	A OF B POFTS	C _L = 50 pF	OE low		0.33			0.33		MHz
Ci	Control inputs	V _I = 2.5 V or 0.5 V				10		2.5	4	pF
C _{io}	I/O ports	V _O = 2.5 V or 0.5 V				13		4.5	8	pF

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡]The parameters I_{OZH} and I_{OZL} include the input leakage current.

SCBS226F - JULY 1993 - REVISED AUGUST 1996

live-insertion specifications over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			SN5	4ABTE1	6245	SN74	UNIT			
PARAI	VIETER		TEST CON	DITIONS	MIN	TYP [†]	MAX	MIN	TYP†	MAX	CIVIT	
loo ()/o	V _{CC} = 0 to 4.5 V, V _{CC} BIAS = 4.5 V to 5.5 V, I _{CC} (V _{CC} BIAS)					250	700		250	700		
100 (40	(Срімо)	$V_{CC} = 4.5 \text{ V to}$ $I_{O(DC)} = 0$	5.5 V [‡] , V _{CC} BI	AS = 4.5 V to 5.5 V,			20			20	μΑ	
Va	V A	VCC = 0	V _{CC} BIAS = 4	.5 V to 5.5 V	1.1	1.5	1.9	1.1	1.5	1.9	V	
Vo	A port	ACC = 0	V _{CC} BIAS = 4	.75 V to 5.25 V	1.3	1.5	1.7	1.3	1.5	1.7	V	
la	A nort	V22 - 0	$V_0 = 0$,	V _{CC} BIAS = 4.5 V	-20		-100	-20		-100	^	
10	A port	ACC = 0	$V_0 = 3 V$,	V _{CC} BIAS = 4.5 V	20		100	20		100	μΑ	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	•		V _{CC} = 5 V, T _A = 25°C			E16245	SN74ABTI	UNIT	
	(INFOT)	(001F01)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
^t PLH	А	В	1.5	3.3	4.2	1.5	5.4	1.5	5.2	ns
^t PHL	^	Ь	1.5	3.8	4.6	1.5	5.4	1.5	5.2	115
^t PLH	В	А	1.5	3	3.8	1.5	4.7	1.5	4.5	no
^t PHL		A	1.5	3.1	4	1.5	4.7	1.5	4.5	ns
^t PZH	ŌĒ	А	2	3.9	5.3	2	6.4	2	6.2	no
t _{PZL}	OE	^	2	4.4	5.9	2	7	2	6.8	ns
^t PZH	ŌĒ	В	2	4.5	6	2	7.3	2	7.1	no
^t PZL	OE .	Ь	2	5	6.4	2	7.5	2	7.3	ns
^t PHZ	ŌĒ	Δ.	2	4.9	5.9	2	7	2	6.7	no
tPLZ	UE	A	2	3.7	4.6	2	5.4	2	5.1	ns
^t PHZ	ŌĒ	OE B	2	5.2	6.2	2	7.2	2	7	nc
^t PLZ	OE .	В	2	4	5	2	5.8	2	5.5	ns

[‡] V_{CC} - 0.5 V < V_{CC}BIAS

SCBS226F - JULY 1993 - REVISED AUGUST 1996

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Note 4 and Figure 2)

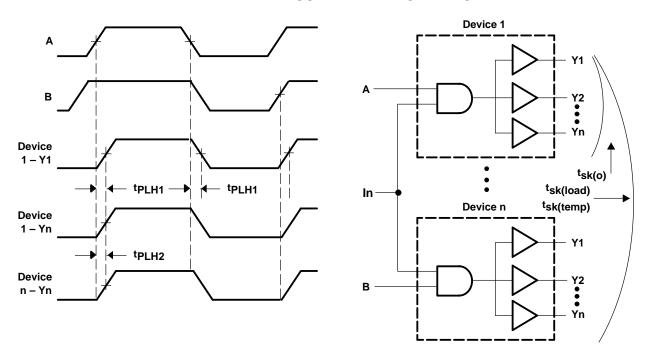
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD		CC = 5 V \ = 25°C		SN54ABT	E16245	SN74ABTI	E16245	UNIT	
	(1141 01)	(0011 01)		MIN	TYP	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	В	Α	Rχ = 13 Ω	1.5	3.2	4	1.5	5	1.5	4.8	ns	
t _{PHL}	ם	χ.	Νχ = 13 22	1.5	3.8	4.7	1.5	5.8	1.5	5.6	115	
t _{PLH}	В	Α	By - 26 O	1.5	3.1	4	1.5	4.8	1.5	4.6	ns	
tPHL	Б		$R\chi = 26 \Omega$	1.5	3.5	4.4	1.5	5.2	1.5	4.9	115	
^t PLH	В	А	Dv. 56.0	1.5	3	3.8	1.5	4.7	1.5	4.5	20	
tPHL	В		A	A	$R\chi = 56 \Omega$	1.5	3.3	4.2	1.5	5.1	1.5	4.7
	В	А	R _X = Open		0.1	0.6		2		2		
^t sk(p)	А	В			0.4	0.8		2		2	ns	
,	В	А	$R_X = 26 \Omega$		0.3	0.8		2		2		
	В	А	R _X = Open		0.3	0.7		1.3		1.3		
^t sk(o)	Α	В			0.7	1.1		1.3		1.3	ns	
	В	Α	$R_X = 26 \Omega$		0.5	1		1.3		1.3		
t _t †	В	А	$R_X = 26 \Omega$	0.5	0.8	1.5	0.5	1.5	0.5	1.5	ns	
t _t ‡	А	В	Rise or fall time 10%–90%	3.5	5.5	7.3	3.5	8.1	3.5	7.9	ns	

[†] t_t is measured between 1 V and 2 V of the output waveform.

NOTE 4: Limits are specified but not tested.

extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (see Note 4 and Figures 1 and 2)

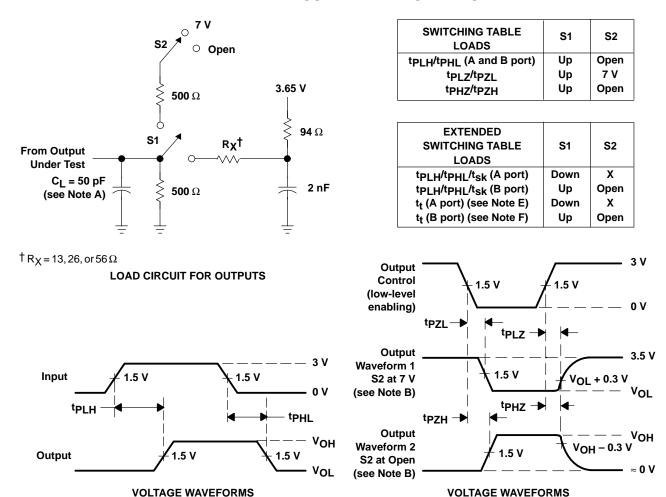
PARAMETER	FROM TO		TEST CONDITIONS	ST CONDITIONS LOAD		SN54ABTE16245		SN74ABTE16245		
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN M		MAX	MIN	MAX	UNIT	
^t sk(temp)	Α	В	V _{CC} = Constant,			3		2.5	20	
	В	Α	$\Delta T_A = 20^{\circ}C$	$R_X = 56 \Omega$		4.5		4	ns	
^t sk(load)	В	В	V _{CC} = Constant, Temperature = Constant	$R_X = 13, 26,$ or 56Ω		4.5		4	ns	


NOTE 4: Limits are specified but not tested.

[‡] t_t is measured between 10% and 90% of the output waveform.

SCBS226F - JULY 1993 - REVISED AUGUST 1996

PARAMETER MEASUREMENT INFORMATION



- NOTES: A. Pulse skew, $t_{sk(p)}$, is defined as the difference in propagation delay times t_{PLH1} and t_{PHL1} on the same terminal at identical operating conditions.
 - B. Output skew, $t_{sk(0)}$, is defined as the difference in propagation delay of the fastest and slowest paths on a single device that originate at either a single input or multiple simultaneously switched inputs (e.g., $|t_{PLH1} t_{PLH2}|$).
 - C. Temperature skew, t_{sk(temp)}, is the output skew of two devices, both having the same value of V_{CC} ± 1% and with package temperature differences of 20°C.
 - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics

SCBS226F - JULY 1993 - REVISED AUGUST 1996

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.

ENABLE AND DISABLE TIMES

- D. The outputs are measured one at a time with one transition per measurement.
- E. t_t is measured between 1 V and 2 V of the output waveform.

PROPAGATION DELAY TIMES

F. t_t is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated