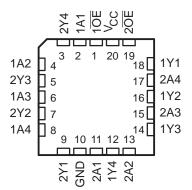
SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS SCBS034B – JULY 1989 – REVISED NOVEMBER 1993

- Open-Collector Version of 'BCT244
- Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds 2000 V Per MIL-STD-883C Method 3015
- Packages Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK) and Flatpacks (W), and Standard Plastic and Ceramic 300-mil DIPs (J, N)

description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.


The 'BCT760 is organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

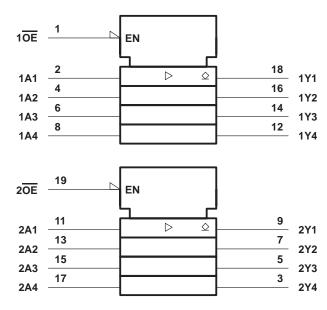
The SN54BCT760 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74BCT760 is characterized for operation from 0°C to 70°C.

SN54BCT760 J OR W PACKAGE
SN74BCT760 DW OR N PACKAGE

(TOP VIEW)							
10E [1A1 [2Y4 [1A2 [2Y3 [1A3 [2Y2 [1A4 [2Y1]	1 2 3 4 5 6 7 8	20 19 18 17 16 15 14 13] V _{CC}] 2OE] 1Y1] 2A4] 1Y2] 2A3] 1Y3] 2A2] 1Y4				
2Y1 [GND [9 10	12 11] 1Y4] 2A1				

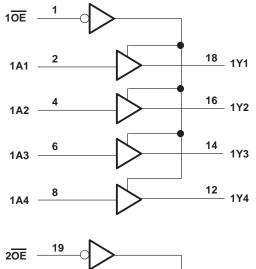
SN54BCT760 . . . FK PACKAGE (TOP VIEW)

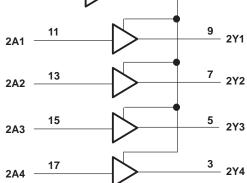
FUNCTION TABLE (each buffer)


(cuon bunci)							
INP	UTS	OUTPUT					
OE	Α	Y					
L	Н	Н					
L	L	L					
н	Х	н					

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54BCT760, SN74BCT760 **OCTAL BUFFERS/DRIVERS** WITH OPEN-COLLECTOR OUTPUTS


SCBS034B - JULY 1989 - REVISED NOVEMBER 1993


logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[‡]

Input current range, I ₁		30 mA to 5 mA
Voltage range applied to any output in the	disabled or power-off state, VO	– 0.5 V to 5.5 V
Voltage range applied to any output in the	high state, VO	$\dots \dots - 0.5$ V to V _{CC}
Current into any output in the low state: SI	N54BCT760	96 mÅ
SI	N74BCT760	128 mA
Operating free-air temperature range: SI	N54BCT760	– 55°C to 125°C
SI	N74BCT760	0°C to 70°C
Storage temperature range		– 65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The negative input voltage rating may be exceeded if the input clamp current rating is observed.

SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS

SCBS034B - JULY 1989 - REVISED NOVEMBER 1993

recommended operating conditions

		SN54BCT760			SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
VOH	High-level output voltage			5.5			5.5	V
IIК	Input clamp current			-18			-18	mA
IOL	Low-level output current			48			64	mA
ТА	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN	SN54BCT760			SN74BCT760							
	TEST CONDITIONS		MIN	TYP†	MAX	MIN	TYP†	MAX	UNIT					
V _{CC} = 4.5 V,	lı = -18 mA				-1.2			-1.2	V					
	I _{OL} = 48 mA			0.38	0.55				V					
VCC = 4.3 V	I _{OL} = 64 mA						0.42	0.55						
$V_{CC} = 5.5 V,$	VI = 7 V				0.1			0.1	mA					
$V_{CC} = 5.5 V,$	VI = 2.7 V				20			20	μΑ					
$V_{CC} = 5.5 V,$	V _I = 0.5 V				-1			-1	mA					
$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V	-			0.1			0.1	mA					
$I_{OH} \qquad V_{CC} = 4.5 \text{ V}, \qquad V_{OH} = 5.5 \text{ V}$ $I_{CC} \qquad V_{CC} = 5.5 \text{ V}, \qquad \text{Outputs open}$		Outputs high		21	33		21	33						
	V _{CC} = 5.5 V,	V _{CC} = 5.5 V,	V _{CC} = 5.5 V,	V _{CC} = 5.5 V,	V _{CC} = 5.5 V,	Outputs open	Outputs low		48	76		48	76	mA
		OE disabled		6	10		6	10						
V _{CC} = 5 V,	V _I = 2.5 V or 0.5 V			6			6		pF					
V _{CC} = 5 V,	V _I = 2.5 V or 0.5 V			10			10		pF					
	$V_{CC} = 4.5 V$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 4.5 V,$ $V_{CC} = 5.5 V,$ $V_{CC} = 5.5 V,$	$\begin{array}{ll} V_{CC} = 4.5 \text{ V}, & I_{I} = -18 \text{ mA} \\ \\ V_{CC} = 4.5 \text{ V} & \hline I_{OL} = 48 \text{ mA} \\ \hline I_{OL} = 64 \text{ mA} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 7 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 2.7 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, & V_{I} = 0.5 \text{ V} \\ \hline V_{CC} = 4.5 \text{ V}, & V_{OH} = 5.5 \text{ V} \\ \hline V_{CC} = 5.5 \text{ V}, & Outputs \text{ open} \\ \hline V_{CC} = 5 \text{ V}, & V_{I} = 2.5 \text{ V} \text{ or } 0.8 \\ \hline \end{array}$	$\begin{array}{l} V_{CC} = 4.5 \ V \\ \hline I_{OL} = 48 \ \text{mA} \\ \hline I_{OL} = 64 \ \text{mA} \\ \hline V_{CC} = 5.5 \ V, & V_I = 7 \ V \\ \hline V_{CC} = 5.5 \ V, & V_I = 2.7 \ V \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V \\ \hline V_{CC} = 4.5 \ V, & V_{OH} = 5.5 \ V \\ \hline V_{CC} = 5.5 \ V, & Outputs \ \text{open} \\ \hline \hline \begin{array}{c} Outputs \ \text{high} \\ \hline Outputs \ \text{low} \\ \hline \hline OE \ \text{disabled} \\ \hline V_{CC} = 5 \ V, & V_I = 2.5 \ V \ \text{or} \ 0.5 \ V \\ \hline \end{array}$	$\begin{tabular}{ c c c c } \hline TEST CONDITIONS & \hline MIN \\ \hline V_{CC} = 4.5 \ V, & I_I = -18 \ mA & & & & \\ \hline I_{OL} = 48 \ mA & & & & \\ \hline I_{OL} = 64 \ mA & & & & \\ \hline I_{OL} = 64 \ mA & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 7 \ V & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 2.7 \ V & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V & & \\ \hline \hline V_{CC} = 5.5 \ V, & Outputs \ open & & \\ \hline \hline Outputs \ high & & \\ \hline \hline Outputs \ low & & \\ \hline \hline \hline \hline OE \ disabled & & \\ \hline V_{CC} = 5 \ V, & V_I = 2.5 \ V \ or \ 0.5 \ V & \\ \hline \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline TEST CONDITIONS & \hline MIN TYPT \\ \hline V_{CC} = 4.5 \ V, & I_I = -18 \ mA & & & & & & & & \\ \hline I_{OL} = 48 \ mA & & & & & & & & & & \\ \hline I_{OL} = 64 \ mA & & & & & & & & & & \\ \hline I_{OL} = 64 \ mA & & & & & & & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 7 \ V & & & & & & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 2.7 \ V & & & & & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 2.7 \ V & & & & & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V & & & & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V & & & & & & & \\ \hline V_{CC} = 5.5 \ V, & V_I = 0.5 \ V & & & & & & & \\ \hline \hline U_{CC} = 5.5 \ V, & Outputs \ open & & & & & & & & \\ \hline \hline Outputs \ Iow & & & & & & & & \\ \hline \hline Outputs \ Iow & & & & & & & & \\ \hline \hline OE \ disabled & & & & & & & & \\ \hline V_{CC} = 5 \ V, & V_I = 2.5 \ V \ or \ 0.5 \ V & & & & & & & & & \\ \hline \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline TEST CONDITIONS & \hline MIN $TYPT$ MAX \\ \hline MIN $TYPT$ MAX \\ \hline V_{CC} = 4.5 V, $I_I = -18 mA -1.2 \\ \hline I_{OL} = 48 mA 0.38 0.55 \\ \hline I_{OL} = 64 mA 0.38 0.55 \\ \hline I_{OL} = 64 mA 0.38 0.55 \\ \hline I_{OL} = 64 mA 0.1 \\ \hline V_{CC} = 5.5 V, $V_I = 7 V 0.1 \\ \hline V_{CC} = 5.5 V, $V_I = 2.7 V 0.1 \\ \hline V_{CC} = 5.5 V, $V_I = 0.5 V 0.1 \\ \hline V_{CC} = 5.5 $V, $V_I = 0.5 V 0.1 \\ \hline V_{CC} = 5.5 $V, $V_I = 0.5 V 0.1 \\ \hline V_{CC} = 5.5 $V, $V_I = 0.5 V 0.1 \\ \hline V_{CC} = 5.5 $V, $V_I = 0.5 V 0.1 \\ \hline Outputs high 21 33 \\ \hline Outputs low 48 76 \\ \hline OE $disabled 6 10 \\ \hline V_{CC} = 5 $V, $V_I = 2.5 V or $0.5 V 0.5 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline TEST CONDITIONS & MIN TYPT & MAX & MIN \\ \hline MIN TYPT & MAX & MIN \\ \hline V_{CC} = 4.5 V, & I_{I} = -18 mA & -1.2 \\ \hline U_{CC} = 4.5 V, & I_{I} = -18 mA & 0.38 & 0.55 \\ \hline I_{OL} = 64 mA & 0.38 & 0.55 \\ \hline I_{OL} = 64 mA & 0.1 \\ \hline V_{CC} = 5.5 V, & V_{I} = 7 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_{I} = 2.7 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_{I} = 0.5 V & -11 \\ \hline V_{CC} = 5.5 V, & V_{I} = 0.5 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_{I} = 0.5 V & 0.1 \\ \hline V_{CC} = 5.5 V, & Outputs open & Outputs high & 21 & 33 \\ \hline Outputs low & 48 & 76 \\ \hline \hline \overline{OE} \ disabled & 6 & 10 \\ \hline V_{CC} = 5 V, & V_{I} = 2.5 V \ or 0.5 V & 6 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline TEST CONDITIONS & MIN TYPT & MAX & MIN TYPT \\ \hline MIN TYPT & MAX & MIN TYPT \\ \hline VCC = 4.5 V, & I_I = -18 mA & -1.2 \\ \hline V_{CC} = 4.5 V, & I_I = -48 mA & 0.38 & 0.55 \\ \hline I_{OL} = 64 mA & 0.38 & 0.55 \\ \hline I_{OL} = 64 mA & 0.42 \\ \hline V_{CC} = 5.5 V, & V_I = 7 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_I = 2.7 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_I = 0.5 V & -11 \\ \hline V_{CC} = 5.5 V, & V_I = 0.5 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_I = 0.5 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_I = 0.5 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_I = 0.5 V & 0.1 \\ \hline V_{CC} = 5.5 V, & V_I = 2.5 V & 0.48 \\ \hline \hline Outputs high & 21 & 33 & 21 \\ \hline Outputs low & 48 & 76 & 48 \\ \hline \hline \overline{OE} \ disabled & 6 & 10 & 6 \\ \hline V_{CC} = 5 V, & V_I = 2.5 V \ or 0.5 V & 6 & 6 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline \mbox{TEST CONDITIONS} & \begin{tabular}{ c c c c c c c c c c c } \hline \mbox{MIN TYPT MAX} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					

[†] All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}C$.

switching characteristics (see Note 2)

PARAMETER	PARAMETER (INPUT)		V _{CC} = 5 V, C _L = 50 pF, R _L = 500 Ω, T _A = 25°C			V _{CC} = 4.5 V to 5.5 V, C _L = 50 pF, R _L = 500 Ω, T _A = MIN to MAX [‡]				UNIT	
			′BCT760			SN54BCT760		SN74BCT760			
					MIN	TYP	MAX	MIN	MAX	MIN	MAX
^t PLH	Any A	A	v	6.3	8	9.5	6.3	11.1	6.3	10	
^t PHL		ř	2.1	4.3	6.5	2.1	7.7	2.1	7.2	ns	
^t PLH	ŌĒ		V	8.6	13	15.2	8.6	18.7	8.6	17.5	20
^t PHL		r	3.2	6.2	8.9	3.2	10.4	3.2	9.9	ns	

[‡] For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated