Introduction to TDC-II and Address Map

Mircea Bogdan (UC)
TIME-TO-DIGITAL

TIME-TO-DIGITAL CONVERSION: 1.2ns sampling rate
serdes_in ~ 20 ns LVDS pulse in the simulation window of QuartusII

MB, 9/8/04
TDC Board– Data Flow

FP Conn4
68 pin LVDS

FP Conn3
68 pin LVDS

FP Conn2
68 pin LVDS

FP Conn1
68 pin LVDS

FIN1104MTC

ECL pulses
-3.3Vcc

TDC Chip_1
STRATIX
EP1S30F780C6

VME Access

TDC Chip_0
STRATIX
EP1S30F780C6

VME Access

VME
EP20K100QC240-3V

CDF_CLK_DEL
2 x 3D3418-0.25S

HCT244

XFT Flags

ABTE16245

MB, 9/8/04
TDC Chip – Data Flow

STRATIX-EP1S30F780C6- Block Diagram
Specifications

Edge detection: 1 hit = min 4 “1”bits followed by min 4 “0”bits;

Records up to 7 hits/wire – max. number is VME controlled: 3 bits in Register 3;

Choice of having the max. number of recorded hits/wire controlled for each L2A pulse with backplane pulses -> dynamic edge detector;

The results are ready for VME read-out ~10 us after a L2A.

Minimum time interval between successive L2A pulses: ~10 us.

Front Panel ECL Calibration Pulse from the backplane or from the on-board Stratix Chip_0. The selection is made via VME. The local 12 ns pulse comes after each B0 with a VME controlled delay.

Configuration of both Stratix chips can be restarted with one VME write operation.

Configuration of the VME chip (all boards in crate) can be restarted from the backplane (P1/C12-SYSRESET*).
TDC Chips - General Address Map

<table>
<thead>
<tr>
<th>Name</th>
<th>VME Address[31..0]</th>
<th>Access</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control reg. - Chip0</td>
<td>0xYY000000 : 0xYY00003C</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>Control reg. - Chip1</td>
<td>0xYY010000 : 0xYY01003C</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>Control reg. – VME Chip</td>
<td>0xYY020000 : 0xYY02003C</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>ID Prom – Chip0</td>
<td>0xYY100000 : 0xYY10003C</td>
<td>R/O</td>
<td>16</td>
</tr>
<tr>
<td>ID Prom – Chip1</td>
<td>0xYY110000 : 0xYY11003C</td>
<td>R/O</td>
<td>16</td>
</tr>
<tr>
<td>Hit_data_buffer – Chip0</td>
<td>0xYY800000 : 0xYY80017C</td>
<td>R/W</td>
<td>Max168</td>
</tr>
<tr>
<td>Hit_data_buffer – Chip1</td>
<td>0xYY810000 : 0xYY81017C</td>
<td>R/W</td>
<td>“</td>
</tr>
<tr>
<td>Hit_count_buffer – Chip0</td>
<td>0xYY900000 : 0xYY900014</td>
<td>R/W</td>
<td>7</td>
</tr>
<tr>
<td>Hit_count_buffer – Chip1</td>
<td>0xYY910000 : 0xYY910014</td>
<td>R/W</td>
<td>7</td>
</tr>
<tr>
<td>Test_data RAM – Chip0</td>
<td>0xYY700000 : 0xYY707FFC</td>
<td>R/W</td>
<td>8192</td>
</tr>
<tr>
<td>Test_data RAM – Chip1</td>
<td>0xYY710000 : 0xYY717FFC</td>
<td>R/W</td>
<td>8192</td>
</tr>
<tr>
<td>XFT_Out RAM – Chip0</td>
<td>0xYYA00000 : 0xYYA07FFC</td>
<td>R/O</td>
<td>8192</td>
</tr>
<tr>
<td>XFT_Out RAM – Chip1</td>
<td>0xYYA10000 : 0xYYA17FFC</td>
<td>R/O</td>
<td>8192</td>
</tr>
<tr>
<td>XFT_DAQ RAM – Chip0</td>
<td>0xYYB00000 : 0xYYB0000FC</td>
<td>R/O</td>
<td>128</td>
</tr>
<tr>
<td>XFT_DAQ RAM. – Chip1</td>
<td>0xYYB10000 : 0xYYB1000FC</td>
<td>R/O</td>
<td>128</td>
</tr>
<tr>
<td>Pulse Gen RAM – Chip0 (*)</td>
<td>0xYYC00000 : 0xYYC007FC</td>
<td>R/W</td>
<td>512</td>
</tr>
<tr>
<td>Pulse Gen RAM – Chip1(*)</td>
<td>0xYYC10000 : 0xYYC107FC</td>
<td>R/W</td>
<td>512</td>
</tr>
<tr>
<td>XFT_Setup RAM – Chip0</td>
<td>0xYYD00000 : 0xYYD0007C</td>
<td>R/W</td>
<td>32</td>
</tr>
<tr>
<td>XFT_Setup RAM – Chip1</td>
<td>0xYYD10000 : 0xYYD1007C</td>
<td>R/W</td>
<td>32</td>
</tr>
</tbody>
</table>

MB, 9/8/04
Readout Memory: Hit - Count Buffer

Six actual Hit-Count VME words: each word has 8, 4-bit words,
One 4-bit word for each wire: - Bit 3 is the channel ON/OFF status,
 - Bits 2..0 are the actual Hit Count Value.

<table>
<thead>
<tr>
<th>Hit Count Word [31..0] - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>31..28</td>
</tr>
<tr>
<td>Hit Count Channel 7</td>
</tr>
<tr>
<td>Hit Count Channel 47</td>
</tr>
</tbody>
</table>

Header: 7..0 Bunch Crossing Counter;
17..8 number of hits in hit data block;
19..18 L2 Buffer number;
20 Unused: 0;
21 Chip serial number: 0 or 1;
22 TDC Type: 1;
31..23 Module ID – set with a VME write on Register 5.
Readout Memory: Hit - Data Buffer

Each hit is recorded as a pair of Leading Edge[7..0], Pulse Width[7..0].

The number of newly recorded hits varies after each L2A pulse.

The max number of Hit-Data words to read after a L2A pulse:
- 16 bits/hit x 7 hits/channel x 48 channel/chip = 5376 bits/chip = 168 VME32 words/chip.

Hit-Data VME readout buffer is never cleared -> it may include hits from old events.

<table>
<thead>
<tr>
<th>Hit Data Word [31..0] - Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>31..24</td>
</tr>
<tr>
<td>Leading Edge[7..0]</td>
</tr>
</tbody>
</table>

Channel m, Hit 1

$0 \leq m \leq 47$

Next Hit on same channel
OR
First hit on higher channel

..............................

Channel n, Hit j

$0 \leq n \leq 47, 1 \leq j \leq 7$

..............................
XFT - Specs

There are two modes of operation for the XFT Block

Old Style:
- We are looking for four consecutive “1” bits (4.8 ns) in a window;
- The same: PROMPT, NOTSURE and LATE windows from the old design;
- Windows are set in units of 6ns;
- The resulting P3 output data follow the same truth table as old TDC.

New Style (Specs are still in progress):
- We are looking for four consecutive “1” bits (4.8 ns) in a window;
- There are 11 time windows programmable in units of 6 ns that cover 396 ns;
- The windows can be placed almost everywhere in the 396 ns time interval.
- Maximum window coverage: ~ 260 ns;

Have yet to determine if we use two different chip designs or if the “Old Style” will be just a particular setup.
The XFT outputs are also routed to a buffer system, similar to the main one.

• We have a Pipe-Line, 4 L2 Buffers and a VME read-out buffer, all with the same number of words as the main DAQ.

• Differences:
 • buffer width (18 bits) and write clock (22ns);
 • this VME read-out buffer is not available for CBLT;

• Pipe Size and L2 Buffer Length are adjustable independently from the main DAQ;

One can corroborate the Hit-Count/Data results with information from the XFT DAQ.

For testing, the chips have also a XFT-OUT-RAM, that has the XFT flags.
The TDC Board permits CBLT transactions as per ANSI/VITA 23-1998.

Crate CPU starts block transfer from a “special” slot => a token passing mechanism => all modules are read successively in just one block transfer => readout time reduced.

- From Slot 30, Addr YY900000 – Hit-Count Buffers – 14 words/board;
- From Slot 31, Addr YY800000 – Hit-Data Buffers – max 192 words/board(4hits/wire).

Example for Hit-Count Buffers readout for 16 TDC boards in crate:
- Regular VME: 32 read transfers @ 7 words each;
- CBLT: 1 transfer @ 224 words.

In the test-crate at UC, measured approx. 200ns between successive _DTACK pulses, using MVME2301 with default timing settings.
CBLT Options

In CBLT transactions *BERR is asserted only by “Last” module, only at the end of transfer.

Readout options:

• Crate CPU has special Error handler:
 => interprets *BERR as end of transfer and deasserts *AS;
 => don’t need to know how many words are there;
 => can read Hit-Data before Hit-Count.

• Crate CPU with no special Error handler (method tested in shop):
 => have to know total number of words to read from crate;
 => read Hit-Count words first (fixed number);
 => calculate number of Hit-Data words;
 => read Hit-Data buffers.

Yet to determine which method is better.
VME Chip

Connects only to bits [15..0] of the VME Data Bus.
Default state: CBLT enabled, Module not Last, Front Panel ECL pulses from backplane.

<table>
<thead>
<tr>
<th>Register [bit]</th>
<th>Name</th>
<th>Access</th>
<th>VME Addr[31..0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0[15..4]</td>
<td>XXXXBEE</td>
<td>R/O</td>
<td>0xYY020000</td>
<td>VME Chip – Program name</td>
</tr>
<tr>
<td>0[3..1]</td>
<td>ZERO</td>
<td></td>
<td></td>
<td>0x0 Test vs. Operation mode</td>
</tr>
<tr>
<td>0[1]</td>
<td>Status-VME Chip</td>
<td></td>
<td></td>
<td>TDC DONE bit</td>
</tr>
<tr>
<td>0[0]</td>
<td>TDC DONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1[0]</td>
<td>CSR1-CBLTDIS</td>
<td>R/W</td>
<td>0xYY020004</td>
<td>When 1[0]=H'0”- CBLT enabled (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When 1[0]=H’1”- CBLT disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When 1[4]=H’0”- Not LAST Module in Chain (default)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When 1[4]=H’1”- LAST Module in CBLT Chain</td>
</tr>
<tr>
<td>1[1]</td>
<td>CSR1-CBLTLAST</td>
<td>R/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A[6..0]</td>
<td>Words0[6..0]</td>
<td>RO</td>
<td>0xYY020028</td>
<td>Number of Hit Data words from Chip0</td>
</tr>
<tr>
<td>A[14..8]</td>
<td>Words1[6..0]</td>
<td></td>
<td></td>
<td>Number of Hit Data words from Chip1</td>
</tr>
<tr>
<td>D[0] (*)</td>
<td>ECLpulse origin</td>
<td>R/W</td>
<td>0xYY020034</td>
<td>When H'0” - Front Panel ECL pulses from backplane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When H’1” - Front Panel ECL pulses from Chip0</td>
</tr>
<tr>
<td>F[0]</td>
<td>VME Chip T/M</td>
<td>W/O</td>
<td>0xYY02003C</td>
<td>Put VME Chip in T/M by writing H’1”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Put VME Chip on Operation Mode by writing H’0”.</td>
</tr>
<tr>
<td>11[] (*)</td>
<td>Reconfigure</td>
<td>W/O</td>
<td>0xYY020044</td>
<td>In T/M, a write at this address will reconfigure both Stratix devices from the EPC16s.</td>
</tr>
</tbody>
</table>

After each event, the VME Chip has the number of new Hit-Data words in Register A.
Using this info(one extra VME read), one can read Hit-Data Buffer before Hit-Count.
The End