ATLAS TileCal Demonstrator
Main Board Design Review

Fukun Tang, Kelby Anderson and Mark Oreglia

The University of Chicago
Main/Daughter Board Readout Structure (1/2 board)
A Single PMT Readout Data Flow

Front-end Board (3-in-1)
- Analog Trigger
- Analog low gain
- Analog high gain
- Analog Integrator

Analog Summing Board
- Trigger Sum

ADC (low gain)
- Low gain ADC data
- Data frame
- Data clock

ADC (Hi Gain)
- High gain ADC data

Control Unit
- Integrator ADC I²C Bus
- Integrator ADC data

Fast Signal Processing
- 2-ch ADC Serial Bus
- SPI Bus & Timing

Slow Signal Processing
- Bus to 3 FEC for control and timing

FPGA (Cyclone IV)
- SPI Bus & Timing

To Daughter Board
- PMT
- Fast Signal Processing
- Slow Signal Processing
12-bit ADCs --- Input Considerations (2-ch is shown)

Input range bias adjustment: pedestal, baseline shift etc.

Differential input + sink

500mV
Vcm=0.9V

Signal from 3-in-1 low gain output:
- 500mV
- 0V
- -500mV

Signal from 3-in-1 high gain output:
- 500mV
- 0V
- -500mV

Sink wire is used for unbalanced current path

ADC: LTC2264-12
Each ADC is readout in serial format @14b x 40MHz = 560Mbps
Every dual ADC shares one DCO
Every ADC in one Region shares one FR

1-Lane Output Mode, 14-Bit Serialization

40MHz

280MHz

40MHz

560Mbps

D2∗ AND D7∗ ARE EXTRA NON-DATA BITS FOR COMPLETE SOFTWARE COMPATIBILITY WITH THE 14-BIT VERSIONS OF THESE ADCS. DURING NORMAL NON-OVERRANGED OPERATION D2∗ AND D7∗ ARE SET TO LOGIC 0. SEE THE DATA FORMAT SECTION FOR MORE DETAILS.
Schematics of Integrator ADCs and Readout (6-ch shown)
12-channel dedicated serial buses to readout high gain and low gain ADCs
 - Each channel has 4 pairs of LVDS signals (SDO0, SDO1, DFRAME, DCK).
4 group of SPI buses connected each FPGA for interfacing MB and DB.
 - Each SPI bus has 4 pairs of LVDS signals (SEL, DI, DO, DCK)
2 group of LVDS charge injection control signals (TPH, TPL, EXC, RESET)
4 group of LVDS I²C buses (SDA, SCL) for Integrator ADC readout
2 group of 2.5V CMOS JTAG signals (TMS, TDI, TDO, TCK)
2 global LVDS Reset signals
6 single-end LV signals (0 to 1VDC) for on board LV monitors (Built-in ADC in Kentex 7)
+10V, +10V_sense, Ground
Reserved signal.

All above signals are defined in 400-pin connector.
• 5 pairs of LVDS signals for integrator gain/cal control (ICAL, S1, S2, S3, S4)
 – 6 valid gain settings and one calibration enable signals
• Two pairs of LVDS signals for charge injection (TPH, TPL)
 – For high gain and low gain charge injections
• 3 pair of LVDS signals for calibration DAC settings (DI, CK, LD)
• One pair of analog integrator output signals.
• +5V, -5V and ground
All Above signals are defined in 40-pin connector mating with ribbon cable.

• 2 pair of analog fast PMT signals (h/L gains)
• One pair of LVDS signals for analog trigger enables.
Main Board Layout Plan

- Physical area: 2 Sections (A & B)
- Logical area: 4 Regions (A0, A1, B0, B1)
FPGA Configurations

- FPGA configurations can be done with one daisy-chained JTAG port in one drawer.
- And have an option to configure FPGAs for each Main Board individually.
Consideration of Power Supply Redundancy

2 independent +10V supplies for each Main Board

Main Board Section-A
- +10V_SEC_A
- +10V_SEC_B
- Fuses
- Local LVs:
 - +10V, +5V, -5V, +2V5
 - +1V8D, +1V8A
 - +1V2, AGND, GND

Main Board Section-B
- +10V_SEC_B
- Local LVs:
 - +10V, +5V, -5V, +2V5
 - +1V8D, +1V8A
 - +1V2, AGND, GND

Xilinx Kintex-7
- FPGA -A
- FPGA -B
- SNAP-12 (PPOD)

12-ch fibers
400-pins conn.
DC/DC Converters

• 2 dual step-down DC/DC converters per Section
 ✓ Input: +10V (accept 4.5V to 26V)
 ✓ Outputs: +5V_A, +2V5_A, +1V8_A, +1V2_A
 ✓ Each switcher 180 degree out of phase for noise and ripple suppression.

• One positive to negative DC/DC converters LT3759 per Section
 ✓ Input: +10V (accept 2.6V to 42V)
 ✓ Output: -5V
- Main Board Dimension: 690x100mm
- 12 Mounting Holes: $\phi = 3.5mm$
 - Mounting holes grounded on PCB for better thermal conducting, it should be insulated to detector ground by alumina posts.

- Daughter Board: 250x100mm
- Summing Adapter Board: 252x100mm
Mainboard Layout View

Complexity and Challenges:
- High speed: (640 Mbps)
- Max. trace length: (20 inches)
- All routes are same direction routes
- Crosstalk consideration: (parallel and tandem)
- Mixed signals (low noise analog and high speed digital)
- Equal timing high speed traces
- Current rate constraints
- Swish-cheesed power planes (via usage limitation)
- Many other challenges such as DC/DC switchers

6 Signal layers
8 Power layers including 3 redundant ground layers (continuous solid plane) for signal integrity and tandem crosstalk reduction

High via and trace density
High via density
Top/Bottom Layers
Typical Inner Signal Layers
Typical Spited Power Layers
Preliminary simulations for early evaluation of signal integrity (1)

Diff. pairs: Top/Bottom layer, 20-inches (100-ohm)
Code: PRBS5 800Mbps
Priliminary simulations for early evaluation of signal integrity (2)

Diff. pairs: Inner layers, 20-inches (100-ohm)
Code: PRBS5 800Mbps
PCB Specifications

- QA Specification: Comply with IPC 6012 Class 2
- Material Glass Transition Temperature: Tg > 170°C
- Do we need IPC 6012 Class 3 qualification?
<table>
<thead>
<tr>
<th>Layer</th>
<th>Type</th>
<th>Thickness (mil)</th>
<th>Single end</th>
<th>Impedance</th>
<th>Differential</th>
<th>Theory value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top side solder mask</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>TOP</td>
<td>copper + plating</td>
<td>1.40</td>
<td>5/5/5 mils • 100Ω±5%</td>
<td></td>
<td>98.53Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prepreg</td>
<td>4.50</td>
<td>adjust to 4.2/5.8/4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td>copper</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>98.53Ω</td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>6.00</td>
<td></td>
<td>5/5/5 mils • 100Ω±5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>adjust to 3.7/6.3/3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td>copper</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>98.53Ω</td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td>copper</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>98.53Ω</td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>5.00</td>
<td></td>
<td>5/5/5 mils • 100Ω±5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>adjust to 3.7/6.3/3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L11</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>6.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>copper</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td>98.53Ω</td>
</tr>
<tr>
<td></td>
<td>core</td>
<td>5.00</td>
<td></td>
<td>5/5/5 mils • 100Ω±5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>adjust to 3.7/6.3/3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>copper</td>
<td>2.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>4.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L14</td>
<td>Bottom</td>
<td>copper + plating</td>
<td>1.40</td>
<td></td>
<td></td>
<td>98.53Ω</td>
</tr>
<tr>
<td></td>
<td>Prepreg</td>
<td>4.50</td>
<td></td>
<td>5/5/5 mils • 100Ω±5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>adjust to 4.2/5.8/4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom side solder mask</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>92.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Layer Stack-up and Diff. Impedance Evaluation

To/Bot Diff: Z=98.53 ohms

Inner Signal Diff: Z=98.53 ohms

Total Thickness: 91.4 mils
Placement of Functional Blocks on Main Board

Top Side View of Virtual PCB

- Patch Panel (Higher Dose)
- 12 H/L Gain ADC + 3-in-1 Control
- 4 FPGAs for Main/FEC timing and control
- 12-ch Integrator ADCs
- All local LVs Monitor Drivers
- Positive DC/DC Regulators (Components on back)
- 400-pin MD/DB Interconn.
- 10V to -5V DC/DC
- 4 Summing card power conn.
- Local DACs for ADC bias settings
- 12 H/L Gain ADC + 3-in-1 Control
PCB quotes were sent to 7 PCB houses.
Only 3 PCB quotes received, others say “sorry” since it is an oversized board.

<table>
<thead>
<tr>
<th>QTY</th>
<th>Quote 1</th>
<th>Quote 2</th>
<th>Quote 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 boards</td>
<td>$4,900</td>
<td>$7,872</td>
<td>$12,313</td>
</tr>
<tr>
<td>20 boards</td>
<td>$8,300</td>
<td>$13,220</td>
<td>$19,266</td>
</tr>
</tbody>
</table>

1200 boards
No Vendor could bid until they see the yield from the prototype run!

4/24/2013
Fukun Tang
Thanks you!