Design Team Members

Mel Shochet <shochet@hep.uchicago.edu>
Harold Sanders <harold@frodo.uchicago.edu>
Fukun Tang <tang@frodo.uchicago.edu>
Un-Ki Yang <ukyang@cdf.uchicago.edu>
Ivan Furic <ikfuric@hep.uchicago.edu>
Jahred Adelman <jahred@cdf.uchicago.edu>
Ted Liu <thliu@fnal.gov>
Takasumi Maruyama <maruyama@fnal.gov>
Paola Giannetti <paola.giannetti@pi.infn.it>
Alberto Annovi <alberto.annovi@pi.infn.it>
Franco Spinella <franco.spinella@pi.infn.it>
SVT upgrade implemented in Pulsar Board

- **3 types of Firmware and their Memory requirements**

 ✓ **AMS/RW**
 - SSmap: 128k x 12bits (17-bit addr x 12-bit data)
 - AMmap: 1M x 36bits (20-bit addr x 36-bit data)

 ✓ **HB**
 - SSmap: 128k x 12bits (17-bit addr x 12-bit data)
 - AMmap: 1M x 36bits (20-bit addr x 36-bit data)
 - HLM: 256k x 21bits (18-bit addr x 21-bit data)
 - HCM: 32k x 4bits (15-bit addr x 4-bit data)

 ✓ **TF**
 - Intercept: 4M x 42bits (22-bit addr x 42-bit data)
 - SSmap: 512k x 24bits (19-bit addr x 24-bit data)
2 types of mezzanine memory cards fit all

(1) M4M: 4M x 48bits memory card
(2) M512K: 512K x 24bits memory card

<table>
<thead>
<tr>
<th>Mezzanine</th>
<th>HB</th>
<th>AMS/RW</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4M</td>
<td>AMmap/SSmap</td>
<td>AMmap</td>
<td>Intercept1</td>
</tr>
<tr>
<td>M512</td>
<td>HLM</td>
<td>SSmap</td>
<td>SSmap</td>
</tr>
<tr>
<td>M4M</td>
<td>None</td>
<td>None</td>
<td>Intercept2</td>
</tr>
<tr>
<td>M512</td>
<td>None</td>
<td>None</td>
<td>SSmap</td>
</tr>
</tbody>
</table>
Introduction to TileCal Readout System

M4M MEMORY CARD DIAGRAM

Extended Connector

NC7SZ86

CS0 CS1

XNOR

IDT74ALS162244

21

3

2

4

BANK0
(2Mx48b)

BANK1
(2Mx48b)

S-Link Connector

IDT74ALS162254

3

21

48

45

48

3

48

4

6

6

4Mx48bits Mezzanine Memory Card Diagram
M4M Memory Access Speed

Single word write-then-read or read-then-write: ~40Mhz

\[
T = T(\text{flight_max}) + T_{pd}(\text{addr_buffer}) + T_{pd}(\text{data_buffer})
+ T(\text{fpga_setup}) + T(\text{mem_access}) + T(\text{skew_margin})
= 3.6ns + 3ns + 3ns + 4ns + 10ns + 2ns = 24.6ns (\sim 40Mhz)
\]

Multiple write or multiple read: ~60Mhz

\[
T = T(\text{mem_access}) + T(\text{fpga_setup}) + T(\text{skew_margin})
= 10ns + 4ns + 2ns = 16ns (\sim 60Mhz)
\]

Latency: ~25ns
Multiple Write Timing

Write Cycle No. 1 (CE₁ Controlled)[13, 14, 15]
Multiple Read Timing

Read Cycle No. 1\(^{10, 11}\)

- ADDRESS
- DATA OUT
- PREVIOUS DATA VALID
- DATA VALID

Read Cycle No. 2 (OE Controlled)\(^{11, 12}\)

- ADDRESS
- \overline{OE}
- \overline{CE}_1
- CE_2

Notes:

10. Device is continuously selected. $\overline{CE}_1 = V_h, \ CE_2 = V_h$.
11. WE is HIGH for Read cycle.
POWER CONSUMPTION

Single Power Supply: +3.3V

Standby: 1.3A

Full Speed Operation: 3A
Board Layout Techniques

Difficulty and Challenge:

Maximum Length of Address and Data Lines: 9 inch

Way long compare with “Critical Length” \(L = \frac{Tr}{2Tpd} \)

All Address and data line need to be well terminated.

Termination Methods:

Address Lines (IDT74ALVC162244):

Inputs: Built-in diode clamping (from Pulsar)

Outputs: Built-in source series terminators (to SRAMs)

Data Lines (IDT74ALVC162245):

All Inputs: Built-in diode clamping

B-port Outputs: External source series terminators (to Pulsar)

A-port Outputs: Built-in source series terminators (to SRAMs)
Board Layers: 8

- 4 signal layers
- 4 power layers

To achieve optimal system performance

- Double side placement: Bank0 on top, Bank1 on Bottom.
- Swap Bank0 and Bank1 Address and Data pin orders to share vias that greatly reduce route length and avoid T-junctions
- Short trace to reduce time of flight
- Terminate lines to increase signal integrity
- Group Address and Data lines for better routing
- Place different group wires in different layers to reduce cross talk
- Place decoupling capacitors to reduce power supply and circuit switch noise
- Obey EMC/EMI rules to avoid signal cross talk and reduce system noise
- All trace are impedance controlled (50 ohms)
Board Stack Order and Layer Thickness

<table>
<thead>
<tr>
<th>Layer#</th>
<th>Material Type</th>
<th>Description</th>
<th>Thickness (mil)</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer1</td>
<td>Conductive(top, Signal_1)</td>
<td>Microstrip</td>
<td>1.4</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer2</td>
<td>Conductive(VCC)</td>
<td>Plane</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer3</td>
<td>Conductive(Signal_3)</td>
<td>Stripline</td>
<td>1.4</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer4</td>
<td>Conductive(GROUND)</td>
<td>Plane</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer5</td>
<td>Conductive(VCC)</td>
<td>Plane</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer6</td>
<td>Conductive(signal_4)</td>
<td>Stripline</td>
<td>1.4</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer7</td>
<td>Conductive(Ground)</td>
<td>Plane</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dielectric 4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer8</td>
<td>Conductive(Bottom, Signal_2)</td>
<td>Microstrip</td>
<td>1.4</td>
<td>52</td>
</tr>
</tbody>
</table>

Note: [1] Total Board Thickness is 0.062 inch, +/- 0.010 inch.
[2] Above is recommended layer thickness based on FR4 with dielectric constant 4.7.
[3] Vendor has a right to adjust layer thickness and control all layer impedance at 50 ohms with tolerance less than +/- 10%.

Add extra power layer pair (layer4, Layer5)

1) Acts as a distributed decoupling capacitor on entire board
2) Isolates signal layers (layer3 and layer6) to reduce EMC/EMI emissions
3) Increases ability to sink heat out of SRAM chips
4) Decreases DC resistance and AC inductance
Notes:
1. All dimensions are in mm.
2. All holes are Ø2.70 ± 0.10 and shall be surrounded by a Ø6.00 keep-out area.
3. There is a 2.00 keep-out area along both long edges which shall be kept free of tracking and components.
4. The origin of the card (0,0) is the centre of voltage keying hole.
M4M On-Board LED Displays

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>LED1</th>
<th>LED2</th>
<th>LED3</th>
<th>LED4</th>
<th>LED5</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER ON</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWER OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BANK0_WRITE</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>BANK0_READ</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>BANK0_STANDBY</td>
<td>X</td>
<td>X</td>
<td>OFF</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BANK1_WRITE</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>BANK1_READ</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>BANK1_STANDBY</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Address or Data Waveforms @ Address or Data Buffer Inputs

FPGA Addr Driver on Pulsar

9-inch Addr Buffer or Data Buffer

Bank0

Bank1

Input diode clamping

Signal from FPGA to memory buffer over 9-in 50-ohm line

Time [ns]

/TOP_TRACE_9IN
 design/T9INS-1../pinInst
 design/T9INL-1../pinInst
Address Signal Waveforms at SRAM Inputs

- FPGA Addr Driver on Pulsar
- 9-inch
- Addr Buffer

Memory Address Signal

Time [ns]

/1MA(20) : /1MA(19)
- design/B1U5-21./pinInst
- design/B0U5-34./pinInst
- design/B1U4-21./pinInst
- design/B1U3-21./pinInst
Write Data Waveforms @ SRAM Inputs

FPGA Addr Driver on Pulsar

9-inch

Bank0

FPGA Data Driver on Pulsar

9-inch

Bank1

Addr Buffer

Data Buffer

Memory Data Signal (Write)
Read Data Waveforms @Data Buffer Inputs

FPGA Addr Driver on Pulsar -> 9-inch -> Addr Buffer -> Bank0

FPGA Data Receiver on Pulsar -> 9-inch -> Bank1

Memory Data Signal (READ)

V_{max} 3.3
V_{inh}
V_{Meas} 1.8
V_{Meas} 1.3
V_{inl} 0.8
V_{min} 0.00
V_{min} -0.2

Time [ns]

/MD(11)
design/B0U3-31/pinInst
design/B1U3-24/pinInst
design/U19-5/pinInst
Read Data Waveforms @ FPGA Inputs

FPGA Addr Driver on Pulsar

9-inch

Addr Buffer

7-inch (inner layer)

FPGA Data Receiver on Pulsar

Data Buffer

Signal from Memory Buffer to FPGA over 7-in 50-ohms line

-Time [ns]

VINH 0.8

VIMH 0.0

VHmax 3.2

VMeas 1.6

VIML 0.4

VHmax 3.2

VMeas 1.6

VIML 0.4

/INNER_TRACE_7INS
design/I7INS-1./pinInst
design/I7INSL-1./pinInst
http://edg.uchicago.edu/~tang/Memory/sram_M4M.html