SVT UPGRADE: Memory Cards Designs

Design Team Members

Mel Shochet *<shochet*@*hep.uchicago.edu>* Harold Sanders <harold@frodo.uchicago.edu> **Fukun Tang** <*tang@frodo.uchciago.edu>* Un-Ki Yang <ukyang@cdf.uchicago.edu> Ivan Furic <*ikfuric@hep.uchicago.edu*> Jahred Adelman < jahred@cdf.uchicago.edu> Ted Liu <*thliu@fnal.gov*> Takasumi Maruyama <maruyama@fnal.gov> Paola Giannetti cpaola.giannetti@pi.infn.it> Alberto Annovi *<alberto.annovi@pi.infn.it>* **Franco Spinella** *<franco.spinella@pi.infn.it>*

SVT UPGRADE: INTRODUCTION

SVT upgrade implemented in Pulsar Board

- 3 types of Firmware and their Memory requirements
- ✓ AMS/RW

SSmap: <u>128k x 12bits</u> (17-bit addr x 12-bit data)

AMmap: <u>*1M x 36bits*</u> (20-bit addr x 36-bit data)

✓ HB

SSmap: <u>128k x 12bits</u> (17-bit addr x 12-bit data)

AMmap: <u>*1M x 36bits*</u> (20-bit addr x 36-bit data)

HLM: <u>256k x 21bits</u> (18-bit addr x 21-bit data)

HCM: <u>32k x 4bits</u> (15-bit addr x 4-bit data)

✓ TF

Intercept: <u>4M x 42bits</u> (22-bit addr x 42-bit data) SSmap: <u>512k x 24bits</u> (19-bit addr x 24-bit data)

SVT UPGRADE: System Configurations

□ 2 types of mezzanine memory cards fit all

- (1) M4M: 4M x 48bits memory card
- (2) M512K: 512K x 24bits memory card

System Configurations:

Mezzanine	HB	AMS/RW	TF
M4M	AMmap/SSmap	AMmap	Intercept1
M512	HLM	SSmap	SSmap
M4M	None	None	Intercept2
M512	None	None	SSmap

M4M MEMORY CARD DIAGRAM

SITY OF

4Mx48bits Mezzanine Memory Card Diagram

Memory Access Speed

M4M Memory Access Speed

Single word write-then-read or read-then-write: ~40Mhz

- T = T(flight_max) + Tpd (addr_buffer) + Tpd(data_buffer)
 - + T(fpga_setup) + T(mem_access) + T(skew_margin)
 - = 3.6ns + 3ns + 3ns + 4ns + 10ns + 2ns = 24.6ns (~40Mhz)

Multiple write or multiple read: ~60Mhz

- T=T(mem_access) + T(fpga_setup) + T(skew_margin)
 - = 10ns + 4ns + 2ns = 16ns (~60Mhz)

Latency: ~25ns

MEMORY WRITE TIMING

Multiple Write Timing

MEMORY READ TIMING

'HE UNIVERSITY OF

Multiple Read Timing

Read Cycle No. 2 (OE Controlled) [11, 12]

10. Device is continuously selected. $\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$. 11. \overline{WE} is HIGH for Read cycle.

POWER CONSUMPTION

Single Power Supply: +3.3V

Standby: 1.3A

Full Speed Operation: 3A

Board Layout Techniques

>Difficulty and Challenge:

Maximum Length of Address and Data Lines: 9 inch

Way long compare with "Critical Length" L= Tr/2Tpd

All Address and data line need to be well terminated.

>*Termination Methods*:

Address Lines (IDT74ALVC162244) :

Inputs: *Built-in diode clamping* (from Pulsar)

Outputs: Built-in source series terminators (to SRAMs)

Data Lines (IDT74ALVC162245) :

All Inputs: Built-in diode clamping

B-port Outputs: *External source series terminators* (to Pulsar)

A-port Outputs: Built-in source series terminators (to SRAMs)

Board Layout Techniques

> To acchieve optimal system performance

- ✓ Double side placement: Bank0 on top, Bank1 on Bottom.
- ✓ Swap Bank0 and Bank1 Address and Data pin orders to share vias that greatly reduce route length and avoid T-junctions
- ✓ Short trace to reduce time of flight
- ✓ Terminate lines to increase signal integrity
- ✓ Group Address and Data lines for better routing
- ✓ Place different group wires in different layers to reduce cross talk
- Place decoupling capacitors to reduce power supply and circuit switch noise
- ✓ Obey EMC/EMI rules to avoid signal cross talk and reduce system noise
- ✓ All trace are impedance controlled (50 ohms)

Board Stack Order and Layer Thickness

B2555 Board Stack Order and Layer Thickness Table					
Layer#	Material Type	Description	Thickness (mil)	Impedance	
Layer1 (Artwork_1)	Conductive(top, Signal_1)	Microstrip	1.4	52	
	Dielectric 4.7		4		
Layer2 (Artwork_2)	Conductive(VCC)	Plane	2.8		
	Dielectric 4.7		9		
Layer3 (Artwork_3)	Conductive (Signal_3)	Stripline	1.4	53	
	Dielectric 4.7		9		
Layer4 (Artwork_4)	Conductive (GROUND)	Plane	2.8		
	Dielectric 4.7		4		
Layer5 (Artwork_5)	Conductive (VCC)	Plane	2.8		
	Dielectric 4.7		9		
Layer6 (Artwork_6)	Conductive (signal_4)	Stripline	1.4	53	
	Dielectric 4.7		9		
Layer7 (Artwork_7)	Conductive (Ground)	Plane	2.8		
	Dielectric 4.7		4	l l	
Layer8 (Artwork_8)	Conductiive (Bottom, Signal_2)	Microstrip	1.4	52	

Note: [1] Total Board Thickness is 0.062 inch, +/- 0.010 inch

[2] Above is recommended layer thickness based on FR4 with dielectric constant 4.7.

[3] Vendor has a right to adjust layer thickness and control all layer impedance at 50 ohms with tolerance less than +/- 10%.

Add extra power layer pair (layer4, Layer5)

- (1) Acts as a distributed decoupling capacitor on entire board
- (2) Isolates signal layers (layer3 and layer6) to reduce EMC/EMI emissions
- (3) Increases ability to sink heat out of SRAM chips
- (4) Decreases DC resistance and AC inductance

M4M Mezzanine Card Dimensions

M4M On-Board LED Displays

FUNCTION	LED1	LED2	LED3	LED4	LED5
POWER ON	ON				
POWER OFF	OFF				
BANK0_WRITE		ON	OFF	ON	OFF
BANK0_READ		OFF	ON	ON	OFF
BANK0_STANDBY		X	Х	OFF	X
BANK1_WRITE		ON	OFF	OFF	ON
BANK1_READ		OFF	ON	OFF	ON
BANK1_STANDBY		X	X	X	OFF

Address or Data Waveforms @ Address or Data Buffer Inputs

Address Signal Waveforms at SRAM Inputs

Time [ns]

/1MA(20) : /1MA(19)	
design/B1U5-21./pinInst	— design/B0U3-34./pinInst
design/B0U5-34./pinInst	- design/B1U4-21./pinInst
<pre> design/B1U3-21./pinInst</pre>	design/B0U4-34./pinInst

Write Data Waveforms @ SRAM Inputs

Read Data Waveforms @Data Buffer Inputs

Read Data Waveforms @ FPGA Inputs

Addr Buffer FPGA Addr Driver on Pulsar 9-inch Bank0 7-inch (inner layer) Bank1 FPGA Data Receiver on Pulsar Data Buffer 3.6 VHmax 3.2 2.8 2.4 Vinh 2 Vinh 1.6 VMeas 1.2 Vinl 0.8 Signal from Memory Buffer to FPGA over 7-in 50-ohms line 0.4 Vimln 0.00 -0.4 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 Time [ns] /INNER TRACE 7IN5

design/I7IN5S-1./pinInst -- design/I7IN5L-1./pinInst

M4M Mezzanine Card Design Info Website http://edg.uchicago.edu/~tang/Memory/sram_M4M.html