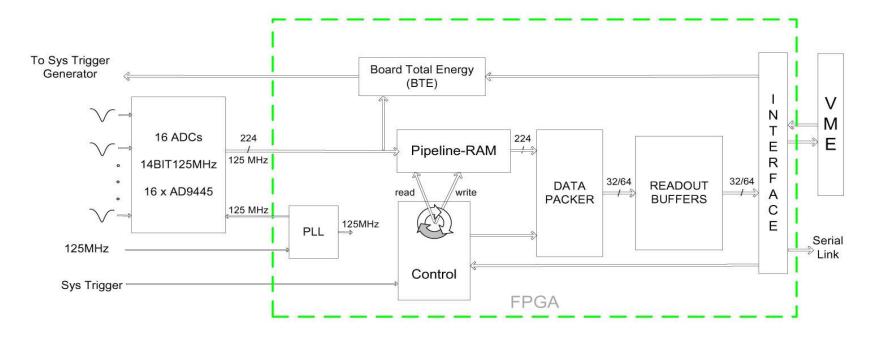

FADC Boards for JPARC-K

Preliminary Proposal

Mircea Bogdan November 16, 2006

12-Bit, 500MHz FADC Board – Block Diagram



- Each FADC channel: one ATMEL AT84AS001 chip: 12 bits/500MHz;
- One STRATIX II FPGA can service up to 4 ADC channels :
 - After SERDES, data moved with 125MHz;
 - Trigger rate: 10kHz, 64 samples/trigger (128ns);
 - Two VME readout buffers max 128 triggers each (10 ms);
 - Input Pipeline: 25 -100us max depth (8,000 51,200 samples);
 - FPGA device migration possible to increase/decrease max pipeline size;

12-Bit, 500MHz FADC Board - Readout

- 4 ADC channels per Board: 6U VME32/64 with CBLT;
- Throughput with 10KHz trigger rate, 100% channel hit occupancy, 64 samples/trigger:
 - One channel: 10KHz x 12bits x 64samples = 0.96 MBPS;
 - 4-channel board: 3.84 MBPS/board;
 - Crate with 7 boards (25 channels): 24 MBPS can be sustained via VME backplane;
 - Serial Link not needed.

14-Bit, 125MHz ADC Board – Block Diagram

- Each ADC channel one AD9445 chip: 14 bits/125MHz;
- One STRATIX II FPGA can service 16 ADC channels:
 - Logic design similar to 500MHz FADC without SERDES;
 - Memory requirements similar to 500MHz FADC with the same time delay;
 - Trigger rate: 10kHz, 16 samples/trigger (128ns);
 - Two VME readout buffers max 128 triggers (10 ms);
 - Input Pipeline: 25 -100us max depth (2,000 12,800 samples);
 - FPGA device migration possible to increase/decrease max pipeline size;

14-Bit, 125 MHz ADC Board - Readout

- 16 ADC channels per Board: 6U VME32/64 with CBLT;
- 16 ADC Boards per Crate;
- Throughput with 10 KHz trigger rate, 10% channel hit occupancy, 16 samples/trigger:
 - One channel: 10KHz x 10% x 2Bytes x 16samples = 32 KBPS;
 - 16-channel board: 512 KBPS/board
 - Crate with 16 boards: 8 MBPS can be sustained via VME backplane;
 - Serial Link not needed.

Conclusions

- High level of reuse between the two designs; many logic blocks are the same;
- FPGA requirements are about the same for: 4-ch,500MHz and 16-ch,125MHz boards;
- Performed preliminary FPGA design tests:
 - With Altera EP2S60F1020C5 (\$600): > 25us depth pipeline;
 - With Altera EP2S90F1020C5 (\$1,600): > 50us depth pipeline;
 - With Altera EP2S130F1020C5 (\$2,800): >100us depth pipeline;
- Memory requirements may be slightly larger on the 4-ch, 500MHz board, because of higher readout throughput per board;
- FPGA device migration possible on the same PCB.