

The Arep Sin Level Acat Image: Single Sin		DWG.NO. 2938	SH REV.		
 A Definition of the Cabbo increase of the Cabbo increase			Top – Comp.Side	Layer Order	
 6.5 feer 6.5 feer 6.6 feer 6.6 feer 6.6 feer 6.6 feer 6.6 feer 6.7 feer 6.7 feer 6.8 feer 6.8 feer 6.8 feer 6.8 feer 6.8 feer 6.9 feer 7.9 feer 7.9				1.Signal_1, Top 2.Power 3.Signal_2 4.Power 5.Signal_3 6.Power 7.Signal_4	
 1. Koterial: Regiment 1. Koterial: Regiment 1. Roterial: R		0.095 +/- 0.008		8.Power 9.Power 10.Signal_5 11.Power	
 Board Cherecteristics - 15 LAYER BOARD 1. Wolshight Medican6 Winimum trace width 0.006' and elementer 0.005' on Signal 1.5 (Too and Batter); Winimum trace width 0.006' and elementer 0.005' on Signal 1.5 (Too and Batter); Winimum trace width 0.006' and elementer 0.005' on Signal 1.2 (top and Batter); Winimum trace width 0.005' one elementer 0.005' on Signal 1.2 (top and Batter); Winimum trace width 0.005' one elementer 0.005' on Signal 1.2 (top and Batter); Winimum trace width 0.005' one signal 1.2 (top and Batter); Fleatholess Nickel Inners on Gold olating, with min. Wit 2.5-5 um; Au. 0.05-6.2 um; Board Theorem 2005 -7-5 005 Will the lay one Batter of the solder side to a remaining thickness of 0.065' +7+ 0.005 Si kappee chamfer. Fes telerances: +7+ 0.003 unless specified otherwise. Incertages spacifies. Zeebo Ohn, Zeilog Whither and 0.006' striptime and all 0.006' microstrip traces. Perform TDR test for all signal layers. Present DR test for all signal layers. Theories of the diameter must be completely filled with Peters PP-2795 on equivalent, planet, planet, and output filled with Peters PP-2795 on equivalent, planet, and output of the opper on surface filled. 				12.Signal_7 13. Power 14.Signal_8 15.Power 16.Signal_6, Bottom	
 4. Les copper for all power levers and for Signal 1,2 (Topland Bottom) 1/2 op copper for Striptime trace levers (Signal 2,3,4,5,7,10,11,12). 5. Electroless Nickel Immension Cold ploting, with min. Ni: 2.5-5 um; Au: 0.05-0.2 um. Apply Solden Mask over bard cooper. 6. Beend Thickness: 0.093 +/- 0.008 7. Mill the Top and Bottom of board on the solder side to a remaining thickness of 0.083' +/- 0.008 8. Sitkspree on Component and Solder Sides. 9. 45 degree chonfer. 10. FES tolerchest +/- 0.003 unless specified otherwise. 11. Interlayer spacing as specified. 12. Zo-50 Ghm, Zo-100 Ohm for all 0.005' striptime and all 0.005' microstrip traces. Perform TDR test for all signal layers. Present TDR test results for all signal layers. 13. Via Fill and Overplate: Vias of this completer must be completely filled with Peters PP 2795 or equivalent, planarized, and plated over with Copper and surface finish. The plated cop must othere to fill material after 1x 5506 solder shock. 	1. Material: 2. Minimum tr 3. Minimum tr	Board Characteristics - 16 L Megtron6 -ace width: 0.006" and clearenc -ace width and clearence: 0.005	AYER BOARD ce: 0.005" on Signal_1,6 5" on Signal 2,3,4,5,7,8	6 (Top and Bottom); 8,9,10,11,12 (all stripline);	
	 4. 1 oz coppe 1/2 oz cop 5. Electroles Apply Sol 6. Board Thic 7. Mill the 8. Silkscreer 9. 45 degree 10. FHS toler 11. Interlayer 12. Zc=50 Ohm Perform T Present T 13. Via Fill Vias of t planarize The plate 	r for all power layers and fo per for Stripline trace layers s Nickel Immersion Gold platin der Mask over bare copper. kness: 0.093 +/- 0.008 op and Bottom of board on the on Component and Solder Sides chamfer. ances: +/- 0.003 unless specif chamfer. ances: +/- 0.003 unless specif spacing as specified. , Zd=100 Ohm for all 0.005" str DR test for all signal layers. DR test for all signal layers. DR test results for all signal and Overplate: his diameter must be completely d, and plated over with Copper d cap must adhere to fill mater	or Signal_1,2 (Top and E S (Signal_2,3,4,5,7,10,1 ng, with min. Ni: 2.5-5 solder side to a remain s. ied otherwise. ripline and all 0.006" layers. y filled with Peters PP and surface finish. rial after 1x 550F sold	and the second s	

	CONTRACT NO.				\top \checkmark \bigcirc \vdash	
e s				RONICS		
	APPROVALS	DATE	TITLE	$A \mid A \mid C -$		_
	DRAWN M. Bogdan	5/14/2019		Specif		
	^{(Hecked} M. Bogdan	5/14/2019	SIZE FSCM NO		DWG.NO.	
	ISSUED		B		29.	50
LUWI			scale 1/	2		S